Inability to make fine-grained distinctions regarding negative emotions prompts impulsivity.

When I first came into recovery I was assigned a task which has gone on to shape much of my thinking about my alcoholism and addiction. I was prompted by my wife to sit with my emotions, that is, to sit in one place beside my wife and not suddenly get up and go elsewhere to avoid whatever emotional state consumed me, terrified me.

I have to say it was the bizarre experience. In my drinking any negative emotions would prime my thoughts towards alcohol and any increased intensity of such thoughts would practically have me skipping to the nearest drinking establishment.

Ever since I was a child, emotions were something to be avoided, tamed or feared. They were destructive, counterproductive things which somehow weakened you.

Now I was being asked to do something I had never accomplished in over thirty years. To sit with, not run from, whatever emotions starting to arise in my mind. As the first undifferentiated blobs of emotions arose I was struck my how I could not recognise them or say with any conviction what emotions they were exactly. In this undifferentiated state they felt like waves of feeling, like possessions, like being haunting by mute poltergeists!

The urge to flee these unpleasant feeling states was overwhelming. I asked my wife for help “what was happening to me!?” “What are these feeling things?”

My wife calmly said they are simply feelings, you are experiencing emotions in their entirety. It was horrible. How the hell had I not done this before, sat with my emotions instead to constantly escaping them somehow?

In fact, I am willing to say that I knew next to nothing about emotions when I arrive in recovery. These is why they have come to fascinate me and inspired my research into affective and clinical/psychiatric neuroscience.

How is it that a grown man got to this stage, to the stage where all his undifferentiated emotions propelled him into movement away from them?

The answer to this question may have been demonstrated in this study (1).

 

rumination2

“Affective functioning plays a prominent role in several etiological models of substance use (e.g., Kassel et al., 2010; McCarthy, Curtin, Piper, & Baker, 2010; Simons, Wills, & Neal, in press). These models suggest that individuals with poor affect regulation show a diminished capacity to handle intense emotion states and often rely upon maladaptive coping strategies, such as substance or alcohol use, to manage their emotions (Lavallo, 2007; Spence & Courbasson, 2012).

One factor related to emotion regulation is emotion differentiation. Emotion differentiation is the ability to make fine grained distinctions between similarly valenced emotion states (Feldman Barrett, 2004). Individuals differ greatly in their ability to differentiate their affective experiences. Some tend to describe their emotional experiences in more global terms, such as feeling “good” or feeling “bad” and find it difficult to make more subtle distinctions, while others make these nuanced differentiations easily. These differences have been shown to impact the ability to regulate emotions and consequential behaviors (Feldman Barrett, Gross, Conner Christensen, & Benvenuto, 2001; Tugade, Fredrickson, & Feldman Barrett, 2004). In support of this, emotional differentiation has been shown to moderate associations between negative emotion and alcohol consumption (Kashdan, Ferssizidis, Collins, & Muraven, 2010).

This research suggests that the inability to differentiate emotion may foster maladaptive behavior when emotionally aroused.

Hence, it is possible that the inability to differentiate emotions may
be related to urgency, defined as rash action in response to intense emotion. Along these lines, research on alexithymia, a construct related to deficits in identifying and describing emotions, shows that these deficits are positively associated with urgency, with urgency often fully mediating the relationship between alexithymia and problematic outcomes, including alcohol consequences (Gaher, Hofman, Simons, & Hunsaker, 2013; Shishido, Gaher, & Simons, 2013).

Moreover, alexithymia has been shown to mediate the relationship between childhood maltreatment (Gaher, Arens, & Shishido, 2013) as well as trauma history
(Gaher, Hofman, et al., 2013) and urgency, suggesting that deficits in
emotional understanding may underlie urgent responding.

The findings of this study (1) showed that negative emotion differentiation was associated with both negative urgency and alcohol which suggests that the inability to make fine-grained distinctions regarding the experience of negative emotions contributes to behavioral disinhibition when in a state of high emotional arousal.

References

1. Emery, N. N., Simons, J. S., Clarke, J. C., & Gaher, R. M. (2014). Emotion Differentiation and Alcohol-Related Problems: The Mediating Role of Urgency.Addictive Behaviors.

 

“I don’t know how I feel, therefore I act!”

One of my pet hates in experimental study is researchers suggesting that one can generalise findings from a non-clinical group of participants in a particular study to a clinical  group, not in the study. For example, most studies in Psychology and in Neuroscience are conducted on very well informed, healthy undergraduate Psychology students with the suggestion that the findings will also be seen in a clinical groups such as alcoholics or addicts. That the findings have ecological validity, they will also be observed in the reality of addicts in real everyday life.

Obviously this is very controversial. How can you one really say that brain processes in a perfectly healthy undergraduate psychology student are similar to those suffering from a mental disorder such as addiction?

It is clear that the behavioural responses of someone with an addictive disorder will be different to those with a perfectly healthy adaptive brain and adaptive behavioural choices. The point of addiction, is that individuals with an addictive disorder often make maladaptive choices and make poor decisions as many brain processes and mechanisms have become chronically impaired. They tend to choose now over then, be very emotional reactive, use “fight or flight” responding to situations rather than reflective, evaluative, goal-directed, action-outcome type of thinking…the list goes on and on, believe me!

In other words, they tend to act in a very different way to healthy undergraduate studies!

I do not have a problem with using undergraduate studies but please do not attempt to generalise findings to a clinical group, or in other words, a group suffering a psychiatric disorder. It is like saying that a study observed in healthy 19-20 year olds could also be said to exist or occur in middle aged schizophrenics? Most rational people would view this as quite peculiar, to say the least. So why do this very same thing with those suffering another mental disorder, called addiction?

 

lab-rat

So why do it at all, use students as participants? Well the study I refer to in this blog shows why using a student sample may have utility. If nothing else this sampling of students provides a control group – that is a group that can act as a “healthy” group compared to a later study  which has used a clinical group as participants. This way we can compare results to observe differences in both sample groups and this can highlight fundamental differences (and sometimes similarities) in healthy and clinical groups and may help highlight specific difficulties which may need to be considered in treating these clinical groups.

Also, and importantly for our overall discussion, through many of our blogs thus far,  regarding the role of emotional processing deficits in impulsivity and decision making deficits in addiction, this type of study can look at “proof of concept” which can then be studied in clinical groups such as those with addictive disorders.

But one must also have the proviso that generalising to this clinical group is not without it’s pitfalls. Just because a certain behavioral manifestation is seen in one healthy group, which has also been seen in a more severe from in a clinical  group , it does not follow that this severity is simple down to using a substance more chronically.

Severity may also be a function of genetic expression within a specific type of environment, e.g. a genetic vulnerability in an “at risk” son of an alcoholic reared in a emotionally abusive background may be a main reason for certain behavioural manifestation rather than simply chronic substance use. Altered stress systems may represent in a similar manner to the chronic toxic effects of chronic drug use but not actually be driven by the same mechanisms or underlying processes.

Regardless on these many sensible caveats, it is still possible to look at certain psychological  traits and relate them to certain behaviours before testing whether these are also observed in a clinical  group such as those with addictive disorders.

The study we refer to here (1) used a large sample of 429 undergraduate students and examined the nature of the relationship between alexithymia and impulsivity.  “Alexithymia is a multifaceted personality construct that is characterized by difficulty identifying and describing feelings  (Taylor, 2000). Alexithymia is associated with a range of disorders, many of which are associated with poor impulse control (Parker, Wood, Bond, & Shaughnessy, 2005; Thorberg, Young, Sullivan, & Lyvers, 2009).
The development of emotional awareness and skills to express feelings are strongly linked to cognitive development because humans use language to identify and express their feelings. According to Taylor, Bagby, and Parker (1997), all individuals have emotions (i.e., neurophysiological arousal), but how we feel the emotions differ
based on our subjective cognitive understanding and experiences.
Without adequate words to describe various neurophysiological stimuli, we cannot feel (identify and describe) them accurately and precisely, and thus we have difficulties regulating our behaviors that follow the emotions (Lane & Schwartz, 1987; Taylor et al., 1997).
The emotional awareness theory presented by Lane and Schwartz (1987) has provided some explanations for the development of alexithymia (Taylor, 2000; Taylor et al., 1997). According to this theory, individuals with alexithymia are considered to be on the first two levels of emotional awareness (i.e., sensorimotor reflexive and sensorimotor enactive) as their abilities to cognitively identify
various feelings precisely by recognizing specific physiological signs of emotions are not yet fully developed (Taylor et al., 1997).
Perhaps, lack of cognitive representations for neurophysiological stimuli may make individuals with alexithymia distressed…and thus they may use alcohol to alleviate their discomfort (Kauhanen et al., 1992; Thorberg et al., 2009; Uzun, 2003)… impulsive individuals tend to rely on reflexive affective (emotional) processes rather than on reflective cognitive processes, to lead their behaviors (Lieberman, 2007; Metcalfe & Mischel, 1999)… impulsivity and alexithymia research emphasize the necessity of using reflective and sophisticated cognitive processes in order to
better regulate emotions and behaviors (Carlson, 2007; Cyders & Smith, 2008)… it is plausible that alexithymia and impulsivity are related under a higher order structure, namely neuroticism, and thus they robustly predict behaviors associated with emotion dysregulation.

This study demonstrated that individuals with alexithymia are more likely to act impulsively when experiencing heightened negative affect…and thus engage in more drinking or experience more negative consequences after drinking.

2013-05-en-Rat-Park-09

 

These results support the use of treatment models that emphasize awareness of feelings and psychological mindfulness as these treatment approaches help clients learn to identify and acknowledge their feelings first, in order to learn how to better regulate them. The results indicate that deficits in the cognitive representation of emotional experience may contribute to impulsive action when emotionally aroused. The current findings may help explain why alexithymia has been identified
as a risk factor for many psychological problems that involve emotional and behavioral regulation deficits, including substance use related disorders (Kauhanen et al., 1992; Troisi et al., 1997).”

Essentially this study on undergraduates has observed similar findings as seen in addicted individuals but this does mean the findings generalise. It means that there is theoretical utility in further exploring this link between emotional processing deficit, alexithymia, the psychological trait of impulsivity and the behavioural manifestation of chronic addiction. Finally it may also be possible by scrutinizing results to identify key differences between these two samples which may aid treatment, intervention and even prevention. We have often mentioned that prevention may in the future involve the identification of emotional processing and regulation deficits in “at risk” children and helping them process emotions more adaptively and effectively.

Addiction seems even more tragic if one considers addiction as the consequence of processes that could possible be rectified or improved in early childhood. Emotional dysregulation heightens the effects of drugs and alcohol also and sets up a viscous cycle of use that often leads to chronic addiction.

It may be the source or rather the heart of the problem.  Prevention would then need to act at the heart of this disorder.

 

References

Shishido, H., Gaher, R. M., & Simons, J. S. (2013). I don’t know how I feel, therefore I act: alexithymia, urgency, and alcohol problems. Addictive behaviors, 38(4), 2014-2017.

Do Gambling addicts have emotional difficulties?

The article I reposted yesterday Gambling with America’s health!

Gambling-addiction

– mentioned how members of  Gamblers’ Anonymous saw gambling addiction, or gambling disorder, as an emotional rather than financial disease. The addicted person “wants to escape into the dream world of gambling” and “finds he or she is emotionally comfortable only when ‘in action.’”

This very revealing statement “emotionally comfortable only when ‘in action’.’” ties in with what we have being proposing in this blog. That addicts of various varieties engage in motoric or repetitve behaviours prompted by a desire to alleviate emotional distress, that somehow motoric of repetitive, compulsive behaviours almost people these individuals “regulate” or control their emotions. In the language of treatment centres, they “fix their feelings” via these obsessive-compulsive activities.

So there must be an inherent  emotional processing and regulation difficulty which prompts these addictive behaviours. As we have seen in previous blogs, the inability to regulate  and process emotions appears to lead to a recruitment of more motoric or compulsive (sub-cortical) parts of the brain rather than goal-directed, action-outcome, prefrontal cortex part of the brain. This leads to less conscious decision making and more “automatic pilot” type of responding.

Is there evidence of this emotional regulation difficulty in gambling addicts as there appears to be with alcoholics and those with eating disorders? In fact, we will explore in future blogs how there appears to be an emotional regulation and processing difficulty at the heart of all these different addictive disorders.

In a study we have recently come across pathological gamblers  reported significantly less use of reappraisal as an adaptive emotion-regulation strategy, and reported a greater lack of emotional clarity and more impulsivity than individuals in the healthy community comparison group. Pathological gamblers reported a greater lack of emotional awareness compared to the healthy control group and reported differences in access to effective emotion-regulation strategies compared to both comparison groups (1).

“Failures in control over gambling are likely to be influenced by individual coping styles. Problem-focused coping includes active and effortful problem solving, while emotion-focused coping includes escape and avoidance behaviours (Lazarus & Folkman, 1984). Scannell, Quirk, Smith, Maddern, and Dickerson (2000) suggested that loss of control over gambling is associated with emotion-focused coping such as avoidance or escape. This suggestion has been supported by evidence that gamblers demonstrate deficits in coping repertoires (McCormick, 1994) and some rely on gambling to provide an escape from personal or familial problems (Corless & Dickerson, 1989; Lesieur & Rosenthal, 1991). Finally, in a sample of adolescent gamblers, those identified as at-risk for developing pathological gambling behaviours were those who exhibited more emotion-focused coping styles (Gupta & Derevensky, 2001).
Gambling behaviours, therefore, seem to be associated with a deficit in self-control
processes that may be exacerbated by reliance on coping styles characterized by
avoidance and escape. At a more basic level, difficulties managing emotions effectively may contribute to the use of maladaptive coping strategies and result in failures in self regulation and impulse control. Optimal self-regulation relies on being able to focus on long-term goals in the presence of emotional distress that tends to shift attention to the immediate present (Tice & Bratslavsky, 2000). In addition, struggling with one’s feelings may deplete coping resources and leads to decreased self-control (Baumeister, Muraven, & Tice, 2000), leading to increased risk of disinhibited or impulsive behaviour.

Finally, individuals who are feeling acute emotional distress will likely wish to escape via activities that promise immediate pleasure (Tice, Bratslavsky, & Baumeister, 2001) and pathological gamblers often report using gambling to escape from negative mood states (Blaszczynski & McConaghy, 1989; Getty, Watson, & Frisch, 2000).

Emotion regulation refers to strategies to influence, experience, and modulate
emotions (Gross, 1999). Although there are several factors that influence whether a
certain emotion-regulation strategy is adaptive in a particular situation, certain strategies appear to be costly and maladaptive. For example, suppression or avoidance of emotions is associated with increased negative effect and anxiety, physiological activity, and physical pain (Campbell-Sills, Barlow, Brown, & Hoffman, 2006; Gross & Levenson, 1997; Levitt, Brown, Orsillo, & Barlow, 2004; Masedo & Esteve, 2007). Experimental investigations also support the notion that the effort of suppressing emotions drains mental resources (Richards & Gross, 2000), which could lead to decreased self-control.

 

128px-Amyg

Ricketts and Macaskill (2003) investigated several techniques that gamblers use to modify their emotions, one of which was the technique of ‘shutting off’ or using gambling in order to stop an unpleasant emotional state.

Patients who used the technique of ‘shutting off’ were often the ones who also reported poorly tolerating emotional discomfort (Ricketts & Macaskill, 2003).
According to Baumeister, Zell, and Tice (2007), emotional distress leads to an increase in self-awareness, which consequently leads to a desire to decrease ones self-awareness. but at the cost of self-regulation.

If one is unable to self-regulate, this could lead to an addiction or a relapse of an addictive behaviour (Sayette, 2004).

Measures of emotion regulation have proved helpful in identifying patterns of
emotional responding associated with a range of substance-dependent population.

Specifically, we investigated the association between emotion-regulation deficits and gambling pathology using two measures of emotion regulation, the DERS and the Emotional Regulation Questionnaire (ERQ; Gross & John, 2003). The ERQ examines the habitual use of two specific emotion-regulation strategies,
namely expressive suppression and cognitive reappraisal. The use of suppression reduces the outward expression of emotions in the short term, but is less effective in reducing emotions in the long term and is, therefore, considered a maladaptive emotion-regulation strategy (Gross, 1998; John & Gross, 2004). Cognitive reappraisal involves changing the meaning associated with a particular situation so that the emotional impact is altered (Gross, 1999; Siemer, Mauss, & Gross, 2007).

 

We hypothesized that pathological gambling would be associated with increased
habitual use of suppression and decreased use of reappraisal on the ERQ and deficits in emotion regulation across multiple domains on the DERS,  the gambling group would rely more on suppression as a habitual emotion-regulation strategy and report increased difficulty regulating their emotions. We also predicted that the gambling group would report less use of reappraisal as an emotion-regulation strategy compared to the healthy control group.

As expected, we found a significant relationship between self-reported problem,
gambling behaviour, and negative effect as measured by the DASS, as well as deficits in emotion regulation as measured by the DERS

Contrary to expectations, we did not find a significant relationship between gambling behaviour – although the gambling group reported a greater lack
of awareness of their emotions so may account for the lack of association between self-reported gambling behaviour and suppression efforts. If gamblers demonstrate less awareness or insight into their emotional states, there may be less need to suppress emotions.

Gamblers have been shown to  be prone to  depression and anxiety (Beaudoin & Cox 1999; Black & Moyer, 1998; Vitaro, Arsenault, & Tremblay, 1999), substance dependence, and greater difficulty managing stress (Blaszczynski & Nower, 2002) and this may  may further weaken inhibitory control and increase the already present propensity for pathological gamblers to make impulsive decisions (McCormick, Russo, Ramirez, & Taber, 1984).

Once a habitual pattern of gambling behaviours has been established, the combination of emotional vulnerabilities, conditioned responses, distorted cognitions, and decision-making deficits maintain the cycle of pathological
gambling. Blaszczynski and Nower (2002) suggest that such emotional vulnerabilities make treatment more difficult in this particular group of gamblers and emphasize the need to address these underlying vulnerabilities in addition to directly targeting gambling behaviours in therapy. It may, therefore, be of therapeutic benefit to specifically assess for and target emotion-regulation strategies in this population of gamblers.

Given the gamblers in the current study demonstrated limited access to effective strategies for managing difficult emotions, it may be important for clinicians to address coping strategies (including emotion-focussed strategies) as a part of any comprehensive treatment package.

It is also important that the clinician is aware of any deficits in emotion-regulation strategies to ensure that the client is prepared to guard against relapse, given that the ability to tolerate distress is associated with increased length of abstinence from gambling (Daughters et al., 2005).”

References

1. Williams, A. D., Grisham, J. R., Erskine, A., & Cassedy, E. (2012). Deficits in emotion regulation associated with pathological gambling. British Journal of Clinical Psychology, 51(2), 223-238.

 

Understanding Emotional Processing Deficits in Addiction – Guest Blog

Understanding Emotional Processing Deficits in Addiction

by alcoholicsguide

We recently blogged on how alcoholics, and children of alcoholics, have difficulty with recognizing and differentiating external signs of emotions such as facial emotional expressions, now we will consider increasing evidence that alcoholics have difficulties with identifying and differentiating internal emotional states also.

Both these areas of research point to real difficulties in alcoholics in relation to the processing of emotion.

As we shall explain below, this deficit in emotional processing has real consequence for decision making capabilities and this has an important role to play in the initiation and maintenance of substance abuse and eventual addiction.

Alexythymia and Addiction

Effective emotion regulation skills include the ability to be aware of emotions, identify and label emotions, correctly interpret emotion-related bodily sensations, and accept and tolerate negative emotions (2,3).

Alexithymia is characterized by difficulties identifying, differentiating and expressing feelings. The prevalence rate of alexithymia in alcohol use disorders is between 45 to 67% (4,5)

Finn, Martin and Pihl (1987) investigated the presence of alexithymia among males at varying levels of genetic risk for alcoholism. They found that the high risk for alcoholism group was more likely to be alexithymic than the moderate and low genetic risk groups (6).

Higher scores on alexithymia were associated poorer emotion regulation skills, fewer percent days abstinent, greater alcohol dependence severity (7). Some studies have emphasized a right hemisphere deficit in alexithymia [8,9] based on the hypothesis that right hemisphere plays a more important role in emotion processing than the left [10, 11].

Dysfunction of the anterior cingulate cortex has been frequently argued, e.g., [12], and others have focused on neural substrates, such as the amygdala, insula, and orbitofrontal cortex (see the review in [13]). All different components of the the emotional regulation  network.

These models may interact with each other and also map onto the brain region morphological vulnerability mentioned as being prevalent in alcoholics.

Magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning (14) .

One might speculate that thinning of the corpus collosum may render alcoholics less able to inhibit negative affect in right hemisphere circuits.

Alcoholics are thus vulnerable to thinning of the corpus collosum and perhaps even to emotional processing difficulties (15 ). The inability to identify and describe affective and physiological experiences is itself associated with the elevated negative affect (16) commonly seen in alcoholics, even in recovery (17.

Thus, this unpleasant experience might prompt individuals to engage in maladaptive behaviors, such as excessive alcohol consumption, in an effort to regulate emotions, or, more specifically, cope with negative emotional states (18 )

One neuroimaging study (19) looked at and compared  various models of alexithymia showing people with alexithymia showed reduced activation in the dorsal ACC and right anterior insula (AI), and suggested individuals who exhibit impaired recognition of their own emotional states may be due to a dysfunction of the ACC-AI network, given these regions’ important role in self-awareness. These studies suggest alexithymics may not be able to use feelings to guide their behaviour appropriately.

The Iowa gambling task (IGT) was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice (20).

ep neg

The neural machinery in alexithymia is therefore activated more on the physiologic, motor-expressive level, similar to the study on children of alcoholics and thus may represent a vulnerability.

The function of the caudate is to regulate or control impulsivity and disinhibition. Individuals with alexithymia may work on the IGT impulsively rather than by using emotion-based signals. This IGT study suggests that individuals with alexithymia may be unable to use feelings to guide their behavior appropriately.

Alexithymic individuals thus may be unable to use emotion for flexible cognitive regulation. Thus, there may be dysfunction in the interaction of the aspects of the emotional response system in alexithymia with greater activation in the caudate (basal ganglia) and less activation in the mPFC in alexithymics during the IGT.

Thus alexithymics show weak responses in structures necessary for the representation of emotion used in conscious cognition and stronger responses at levels focused on action. This ties in with the blog on an emotional disease? and also  so how is your decision making? which suggested that alcoholics do not use emotion to guide decision making and rely on more motor, or automatic/compulsive parts of the brain to make decisions.

Consequently, alexithymics experience inflexible cognitive regulation, owing to impairment of the emotion guiding system. These dysregulated physiological responses over many years may result in untoward health effects such as drug addiction.

To illustrate this, one study demonstrated that patients with cocaine dependence had higher alexithymia scores compared with healthy control subjects (21).

In a study of 46 inpatients with alcohol abuse or dependence, the total TAS (Toronto Alexithymia Scale) score was significantly higher among those who relapsed after discharge than among those who did not, even when depressive symptoms were taken into account(4)

Cocaine-dependent patients also failed to activate the anterior cingulate and other paralimbic regions during stress imagery, suggesting dysregulation of control under emotional distress in these patients (22).

Instead, cocaine-dependent patients demonstrated greater craving-related activation in the dorsal striatum, a region that has been implicated in reward processing and obsessive–compulsive behaviours. The greater activation associated with alexithymia in men in the right putamen during stress is broadly consistent with earlier studies implicating the striatum in emotional motor responses.

This also corresponds to  the study of  children of alcoholics show significantly more activation in the left dorsal anterior cingulate cortex and left caudate nucleus a region associated with impulsive choice, illustrating perhaps in children of alcoholics a bias in brain decision-making systems as an underlying  elevated risk for alcoholism.

We have also suggested previously a ‘compulsive’ emotional  habit bias in endpoint addiction which reflects a stiumulus response or automatic behaviour in the face of emotional distress, which then influences an automatic decision making profile. This may be the effect of chronic drug use impacting on an inherited emotional expressive-motor decision making vulnerability seen in children of alcoholics.

In simple terms, these vulnerable individuals may recruit more automatic rather than goal-directed areas of the brain when making decisions. This would result in impulsive/compulsive decisions which do not fully consider consequences, negative or otherwise, of their decisions and resultant actions. This decision making profile would then have obvious consequences in terms of a propensity to addiction.

 

References (to be finished)

1. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula.Trends in neurosciences32(1), 56-67.

2. Berking M, Margraf M, Ebert D, Wupperman P, Hogmann SG, Junghanns K. Deficits in emotion-regulation skills predict alcohol use during and after cognitive-behavioral therapy for alcohol dependence. Journal of Consulting and Clinical Psychology. 2011;79:307–318

3. Gratz KL, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment.2004;26:41–54

4. Loas G, Fremaux D, Otmani O, Lecercle C, Delahousse J. Is alexithymia a negative factor for maintaining abstinence? A follow-up study. Comprehensive Psychiatry. 1997;38:296–299.

5. Ziolkowski M, Gruss T, Rybakowski JK. Does alexithymia in male alcoholics constitute a negative factor for maintaining abstinence. Psychotherapy and psychosomatics. 1995;63:169–173.

6.  Finn PR, Martin J, Pihl RO. Alexithymia in males at high genetic risk for alcoholism.Psychotherapy and Psychosomatics.1987;47:18–21

7.  Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

8. Miller L. Is alexithymia a disconnection syndrome? A neuropsychological perspective. Int J Psychiatry Med. 1986;7:199–209. doi: 10.2190/DAE0-EWPX-R7D6-LFNY.

9. Sifneos PE. Alexithymia and its relationship to hemispheric specialization, affect, and creativity.Psychiatr Clin North Am. 1988;7:287–292.

10. Buchanan DC, Waterhouse GJ, West SC Jr. A proposed neurophysiological basis of alexithymia. Psychother Psychosom. 1980;7:248–255. doi: 10.1159/000287465.

11. Shipko S. Further reflections on psychosomatic theory. Alexithymia and interhemispheric specialization. Psychotherapy and psychosomatics.

12. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Neural correlates of levels of emotional awareness Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J cognitive neuroscience. 1998;7:525–535. doi: 10.1162/089892998562924.

13. Wingbermühle E, Theunissen H, Verhoeven WMA, Kessels RPC, Egger JIM. The neurocognition of alexithymia: evidence from neuropsychological and neuroimaging studies.Acta Neuropsychiatrica. 2012;7:67–80. doi: 10.1111/j.1601-5215.2011.00613.x.

14. Oscar-Berman, M., & Bowirrat, A. (2005). Genetic influences in emotional dysfunction and alcoholism-related brain damage.

15. Sperling W, Frank H, Martus P, et al. The concept of abnormal hemispheric organization in addiction research. Alcohol Alcohol.2000;35:394–9.

16.  Connelly M, Denney DR. Regulation of emotions during experimental stress in alexithymia. Journal of Psychosomatic Research. 2007;62:649–656

17. Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., Coffey, S. F., Schlauch, R. C., Bailey, S. T., … & Gulliver, S. B. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample.Addictive Behaviors37(4), 469-476.

18.  Thorberg FA, Young RM, Sullivan KA, Lyvers M, Hurst CP, Connor JP, Feeney GFX. Alexithymia in alcohol dependent patients is partially mediated by alcohol expectancy. Drug and Alcohol Dependence. 2011;116:238–241

19. Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

20.  Kano M, Fukudo S. The alexithymic brain: the neural pathways linking alexithymia to physical disorders. BioPsychoSocial medicine. 2013;7:1. doi: 10.1186/1751-0759-7-1.

21.  Li, C. S. R., & Sinha, R. (2006). Alexithymia and stress-induced brain activation in cocaine-dependent men and women. Journal of psychiatry & neuroscience,31(2).

22.  Sinha, R., Lacadie, C., Skudlarski, P., Fulbright, R. K., Rounsaville, B. J., Kosten, T. R., & Wexler, B. E. (2005). Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study.Psychopharmacology183(2), 171-180.

Do alcoholics drive through life with Faulty Brakes!

There has been a lot of debate in the last thirty – forty years about genetic inheritance – with at least half of children of alcoholic families at risk for later alcoholism. What is less known is what exactly is inherited in our genes? What marks us out for later alcoholism? Prior to drinking are there aspects of our behaviour, personality or emotional responding that marks us out compared to so-called normal healthy types.

Recently research has looked at brain systems which overlap in decision making such as cognitive control over impulsive behaviour and also emotional processing. Children from alcoholics seem to have difficulties with both these overlapping circuits in the brain – they are not only impulsive but also do not seem to process emotions in the same way their “health” peers do. Research has also begun  to show that emotional processing is indeed important to making decisions, as is the ability to inhibit impulsive responses.

It seems  young alcoholics in the making, are not using our emotions  to make decisions and  are also prone to being impulsive. This difficulty with making decisions must shape all other future decisions ?

Youth for families with a history of alcoholism (FH+) are more likely to engage in early adolescent alcohol use (1), they may be more prone to experience the neurotoxic effects of alcohol use during adolescence.

_54075099_teenage_girl_drinking_

Heavy alcohol use during adolescence is related to poorer neuropsychological functioning, including response inhibition (2), working memory (3-5), and decision-making (6).

Neuroimaging studies have shown that alcohol abusing teens have atypical grey matter volume in the PFC (7,8), and subcortical structures, such as the hippocampus (9,10) OFC and the amgydala.

Further, they have reduced integrity of white matter pathways, in both long-range connections between frontal and parietal brain regions as well as in pathways connecting subcortical and higher-order brain areas (11,12).

FMRI studies have found reduced BOLD response in adolescent alcohol abusers
in brain regions important affective decision-making (13).

The raging debate in research has been to whether these deficits are a consequence of heavy alcohol use or if genetic and environmental factors, such as family history of alcoholism, may contribute.

Risk Factor for Alcohol Use Disorders (AUDs): Family History of Alcoholism

The observation that alcoholism runs in families has long been documented
(14-16). Over the past few decades, adoption (17,18) and twin (19)
studies have suggested that there is an increased likelihood of individuals with a family history of alcoholism to develop the disorder themselves (20, 21).

These studies indicate that familial alcoholism is one of the most robust predictors of the development of an AUD during one’s lifetime. Furthermore, this risk factor appears to be stable over time, since it also predicts the chronicity of alcohol dependence at multiple time points (22).
This indicates that higher familial density is often associated with greater
risk (23), with genetic vulnerability accounting for about 30-50% of
individual risk (24-26).

 

One of the best characterized findings in individuals with familial alcoholism are greater impulsivity and difficulties in response inhibition which are commonly seen in this population (27,28), and FH+ individuals are less able to delay reward gratification compared with their peers (29).

Emotional processing and its relationship with executive control has received much less
attention in FH+ individuals.

Alcohol Use Disorders and Emotional Processing

Emotion Recognition and Affective Processing – Research suggests that alcohol use disorder (AUDs)  are associated with deficits in emotion recognition
(30-33), which may be related to atypical brain structure and functioning observed in the
limbic system among alcoholics (34-37).

Alcoholics not only tend to overestimate the intensity of emotions seen in faces  but they also make more negative emotional attributions and often confuse one emotion for another, such as mislabeling disgust as anger or contempt (32). Additionally, these deficits seem to be specific to alcoholism, since alcoholics, both recently abstinent and long-term abstinent, perform poorer on emotion recognition tasks than individuals with other drug abuse history (38). Alcoholics have also been shown to have slower reaction time when recognizing emotions (39).
Furthermore, poorer accuracy on emotion recognition tasks in alcoholics does not improve across the duration of the task, even though better performance is seen over time with other drug abusers (38).

Polysubstance abusing adults, the majority of whom were alcohol abusers, showed emotion recognition deficits on angry, disgusted, fearful, and sad faces (40). Based on the evidence of emotion recognition deficits in alcoholics, it is necessary to determine whether similar difficulties are present in FH+ youth that could be disruptive to emotional functioning and may contribute to the ultimately higher prevalence of alcohol abuse in this population.

Ultimately we may be observing here external emotional processing difficulties in the same manner we observed “internal” emotional processing difficulties in those with alexithymia, the reduced ability to “read” internal emotions of which a majority of alcoholics appear to suffer.

In summary, alcoholics and children of alcoholic families appear to have both external, i.e. recognition of other people’s emotions as well as their own and these may relate to immature development of brain regions which govern emotional, processing, recognition and regulation, which appears to contribute greatly to the initiation and progression of alcohol abuse.

binge_drink404_675458c

In addition to emotional processing deficits, alcoholics have various structural
and functional abnormalities in affective processing brain regions. Studies of the limbic system have found reduced volume in subcortical structures, including the amygdala, thalamus, ventral striatum, and hippocampus among adult alcoholics (41,42). Alcoholics with smaller amygdalar volumes, are more likely to continue drinking after six months of abstinence (37).

Marinkovic et al. (2009) alcoholics exhibited both amygdalar and hippocampal hypoactivity during face encoding, and when recognizing deeply encoded faces, alcoholics had significantly reduced amygdalar activity to positive and negative emotional expressions compared with controls (35). These results help explain findings in behavioral studies of alcoholics that have found considerable evidence for emotion recognition deficits in this population.

Furthermore, during emotion identification, alcoholics showed comparable
performance to controls, but had reduced brain response in the affective division of the
anterior cingulate cortex (ACC) to disgust and sadness, with this lack of affective response to aversive stimuli believed to underlie disinhibitory traits in AUDs (36).

There is also evidence to suggest that non-alcohol abusing FHP individuals
share similar deficits in affective systems to alcohol abusers, including reduced
amygdalar volume, less amygdalar activity in response to emotional stimuli, and high
rates of internalizing symptoms such as anxiety and depression (37; 45-47).

Furthermore, research examining the relationship between emotional
processing and cognition has found that poor inhibition in individuals with co-morbid
substance and alcohol abuse is associated with atypical arousal in response to affective images (48), and affective measures in FH+ alcoholics also relate to deficits in executive functioning, e.g impulsivity (47).

This suggests that familial history of AUDs may put individuals at greater risk for problems with emotional processing and associated disruptions in executive functioning (47), which could, in turn, increase risk for alcohol abuse (49).

As we suggested previously, in relation to decision making profiles, in those at risk, those with alexithymia and also with cocaine addicts, decision making often involves more emotion expressive-motor areas of the brain like the caudate nucleus which is more of a “feel it-do it” type of reaction to decision making or a emotionally impaired or distress-based impulsivity. If there is a difficulty  processing emotions, these emotions can not be used as a signal to guide adaptive, optimal decisions. Decisions appear more compulsive and short term.

It may be this tendency to act now, rather than later,  that defines the vulnerability in FH+ children. It is like driving through life with faulty brakes on decision making, which sets up a chain of maladaptive choices such as alcohol abuse which then damages these affective based decision making regions of the brain even more, with increasing  deleterious consequences as the addiction cycle progresses until the endpoint of addiction of very limited choice of behaviour as emotional distress acts eventually as a stimulus response to alcohol use.  Emotional processing usurped by compulsive responding.

 

References

Main reference – Cservenka, A., Fair, D. A., & Nagel, B. J. (2014). Emotional Processing and Brain Activity in Youth at High Risk for Alcoholism. Alcoholism: Clinical and Experimental Research.

1.  Dawson, D.A., 2000. The link between family history and early onset alcoholism: earlier initiation of drinking or more rapid development of dependence? J Stud Alcohol 61, 637-646.

2. Ferrett, H.L., Cuzen, N.L., Thomas, K.G., Carey, P.D., Stein, D.J., Finn, P.R., Tapert, S.F., Fein, G., 2011. Characterization of South African adolescents with alcohol use disorders but without psychiatric or polysubstance comorbidity. Alcohol Clin Exp Res 35, 1705-1715.

3. Brown, S.A., Tapert, S.F., 2004. Adolescence and the trajectory of alcohol use: basic to clinical studies. Ann N Y Acad Sci 1021, 234-244.

4.   Brown, S.A., Tapert, S.F., Granholm, E., Delis, D.C., 2000. Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcohol Clin Exp Res 24, 164-171.

5.   Squeglia, L.M., Schweinsburg, A.D., Pulido, C., Tapert, S.F., 2011. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 35, 1831-1841.

6. Johnson, C.A., Xiao, L., Palmer, P., Sun, P., Wang, Q., Wei, Y., Jia, Y., Grenard, J.L.,  Stacy, A.W., Bechara, A., 2008. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers. Neuropsychologia 46, 714-726.

7. De Bellis, M.D., Narasimhan, A., Thatcher, D.L., Keshavan, M.S., Soloff, P., Clark, D.B.,  2005. Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcohol Clin Exp Res 29, 1590-1600.

8.  Medina, K.L., McQueeny, T., Nagel, B.J., Hanson, K.L., Schweinsburg, A.D., Tapert, S.F., 2008. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol Clin Exp Res 32, 386-394.

9.  De Bellis, M.D., Clark, D.B., Beers, S.R., Soloff, P.H., Boring, A.M., Hall, J., Kersh, A., Keshavan, M.S., 2000. Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157, 737-744.

10.  Nagel, B.J., Schweinsburg, A.D., Phan, V., Tapert, S.F., 2005. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry Res 139, 181-190.

11.  Bava, S., Jacobus, J., Thayer, R.E., Tapert, S.F., 2013. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 37 Suppl 1, E181-189.

12.   McQueeny, T., Schweinsburg, B.C., Schweinsburg, A.D., Jacobus, J., Bava, S., Frank, L.R., Tapert, S.F., 2009. Altered white matter integrity in adolescent binge drinkers. Alcohol Clin Exp Res 33, 1278-1285.

13. Xiao, L., Bechara, A., Gong, Q., Huang, X., Li, X., Xue, G., Wong, S., Lu, Z.L., Palmer, P., Wei, Y., Jia, Y., Johnson, C.A., 2012. Abnormal Affective Decision Making Revealed in Adolescent Binge Drinkers Using a Functional Magnetic Resonance Imaging Study. Psychol Addict Behav.

14. Cotton, N.S., 1979. The familial incidence of alcoholism: a review. J Stud Alcohol 40, 89-116.

15. Goodwin, D.W., 1979. Alcoholism and heredity. A review and hypothesis. Arch Gen Psychiatry 36, 57-61.

16.  Schuckit, M.A., 1985. Genetics and the risk for alcoholism. Jama 254, 2614-2617

17. Bohman, M., 1978. Some genetic aspects of alcoholism and criminality. A population of adoptees. Arch Gen Psychiatry 35, 269-276.

18. Cloninger, C.R., Bohman, M., Sigvardsson, S., 1981. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry 38, 861-868.

19. Merikangas, K.R., Stolar, M., Stevens, D.E., Goulet, J., Preisig, M.A., Fenton, B., Zhang, H., O’Malley, S.S., Rounsaville, B.J., 1998. Familial transmission of substance use disorders. Arch Gen Psychiatry 55, 973-979

20. Finn, P.R., Kleinman, I., Pihl, R.O., 1990. The lifetime prevalence of psychopathology in men with multigenerational family histories of alcoholism. J Nerv Ment Dis 178, 500-504.

21. Goodwin, D.W., 1985. Alcoholism and genetics. The sins of the fathers. Arch Gen Psychiatry 42, 171-174.

22. Hasin, D., Paykin, A., Endicott, J., 2001. Course of DSM-IV alcohol dependence in a community sample: effects of parental history and binge drinking. Alcohol Clin Exp Res 25, 411-414.

23. Hill, S.Y., Yuan, H., 1999. Familial density of alcoholism and onset of adolescent drinking. J Stud Alcohol 60, 7-17.

24.   Heath, A.C., Bucholz, K.K., Madden, P.A., Dinwiddie, S.H., Slutske, W.S., Bierut, L.J., Statham, D.J., Dunne, M.P., Whitfield, J.B., Martin, N.G., 1997. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 27, 1381-1396.

25. Kaprio, J., Koskenvuo, M., Langinvainio, H., Romanov, K., Sarna, S., Rose, R.J., 1987. Genetic influences on use and abuse of alcohol: a study of 5638 adult Finnish twin brothers. Alcohol Clin Exp Res 11, 349-356.

26.  Knopik, V.S., Heath, A.C., Madden, P.A., Bucholz, K.K., Slutske, W.S., Nelson, E.C., Statham, D., Whitfield, J.B., Martin, N.G., 2004. Genetic effects on alcohol dependence risk: re-evaluating the importance of psychiatric and other heritable risk factors. Psychol Med 34, 1519-1530.

27. Acheson, A., Richard, D.M., Mathias, C.W., Dougherty, D.M., 2011a. Adults with a family history of alcohol related problems are more impulsive on measures of response initiation and response inhibition. Drug Alcohol Depend 117, 198-203.

28.  Saunders, B., Farag, N., Vincent, A.S., Collins, F.L., Jr., Sorocco, K.H., Lovallo, W.R., 2008. Impulsive errors on a Go-NoGo reaction time task: disinhibitory traits in relation to a family history of alcoholism. Alcohol Clin Exp Res 32, 888-894.

29.  Acheson, A., Vincent, A.S., Sorocco, K.H., Lovallo, W.R., 2011b. Greater discounting of delayed rewards in young adults with family histories of alcohol and drug use disorders: studies from the Oklahoma family health patterns project. Alcohol Clin Exp Res 35, 1607-1613.

30. Foisy, M.L., Kornreich, C., Petiau, C., Parez, A., Hanak, C., Verbanck, P., Pelc, I., Philippot, P., 2007b. Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues? Psychiatry Res 150, 33-41.

31.  Foisy, M.L., Philippot, P., Verbanck, P., Pelc, I., van der Straten, G., Kornreich, C., 2005. Emotional facial expression decoding impairment in persons dependent on multiple substances: impact of a history of alcohol dependence. J Stud Alcohol 66, 673-681.

32.  Philippot, P., Kornreich, C., Blairy, S., Baert, I., Den Dulk, A., Le Bon, O., Streel, E., Hess, U., Pelc, I., Verbanck, P., 1999. Alcoholics’ deficits in the decoding of emotional facial expression. Alcohol Clin Exp Res 23, 1031-1038.

33.  Townshend, J.M., Duka, T., 2003. Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41, 773-782.

34.  Gilman, J.M., Hommer, D.W., 2008. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict Biol 13, 423-434.

35. Marinkovic, K., Oscar-Berman, M., Urban, T., O’Reilly, C.E., Howard, J.A., Sawyer, K., Harris, G.J., 2009. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol Clin Exp Res 33, 1880-1892.

36.  Salloum, J.B., Ramchandani, V.A., Bodurka, J., Rawlings, R., Momenan, R., George, D., Hommer, D.W., 2007. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol Clin Exp Res 31, 1490-1504.

37.  Wrase, J., Makris, N., Braus, D.F., Mann, K., Smolka, M.N., Kennedy, D.N., Caviness, V.S., Hodge, S.M., Tang, L., Albaugh, M., Ziegler, D.A., Davis, O.C., Kissling, C., Schumann, G., Breiter, H.C., Heinz, A., 2008. Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165, 1179-1184.

38.  Kornreich, C., Foisy, M.L., Philippot, P., Dan, B., Tecco, J., Noel, X., Hess, U., Pelc, I., Verbanck, P., 2003. Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Res 119, 251-260.

39.  Maurage, P., Campanella, S., Philippot, P., Martin, S., de Timary, P., 2008. Face processing in chronic alcoholism: a specific deficit for emotional features. Alcohol Clin Exp Res 32, 600-606.

40.  Fernandez-Serrano, M.J., Perez-Garcia, M., Schmidt Rio-Valle, J., Verdejo-Garcia, A., 2010. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol 24, 1317-1332.

41.  Durazzo, T.C., Tosun, D., Buckley, S., Gazdzinski, S., Mon, A., Fryer, S.L., Meyerhoff, D.J., 2011. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence. Alcohol Clin Exp Res 35, 1187-1200.

42.   Makris, N., Oscar-Berman, M., Jaffin, S.K., Hodge, S.M., Kennedy, D.N., Caviness, V.S., Marinkovic, K., Breiter, H.C., Gasic, G.P., Harris, G.J., 2008. Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64, 192-202.

43.   Benegal, V., Antony, G., Venkatasubramanian, G., Jayakumar, P.N., 2007. Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addict Biol 12, 122-132.

44.  Glahn, D.C., Lovallo, W.R., Fox, P.T., 2007. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry 61, 1306-1309.

45.   Hill, S.Y., De Bellis, M.D., Keshavan, M.S., Lowers, L., Shen, S., Hall, J., Pitts, T., 2001. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry 49, 894-905.

46.  Oscar-Berman, M., Bowirrat, A., 2005. Genetic influences in emotional dysfunction and alcoholism-related brain damage. Neuropsychiatr Dis Treat 1, 211-229.

47.  Sinha, R., Parsons, O.A., Glenn, S.W., 1989. Drinking variables, affective measures and neuropsychological performance: familial alcoholism and gender correlates. Alcohol 6, 77-85

48.  Verdejo-Garcia, A., Bechara, A., Recknor, E.C., Perez-Garcia, M., 2006. Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12, 405-415.

49.  Fox, H.C., Hong, K.A., Sinha, R., 2008. Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addict Behav 33, 388-394

 

At Risk Adolescents have Emotional Dysregulation?

Following up from our previous blog on the abnormalities in the ventromedial prefrontal cortex  (vmPFC) in alcoholics,  brain regions which govern emotional regulation, we came across another study which appears to show that adolescents at increased risk for later alcohol use disorders (AUDs) may also be showing an emotion regulation difficulty.

This emotional regulation difficulty may be a biomarker for later alcoholism, which is in keeping with our previous proposals that an emotional processing and regulation difficulty or disorder underpins the aetiolgy of of alcoholism. In order words it is part of the pathomechanism – or the mechanism by which a pathological condition occurs- of later alcoholism.

 

 ventromedial-prefrontal-cortex

 

The area in this study, the vmPFC,   showed relatively increased cerebral blood flow (CBF) in bilateral amygdala and vmPFC and relatively decreased CBF in bilateral insula, right dorsal anterior cingulate cortex (ACC) and occipital lobe cuneus of high-risk adolescents. This suggests that adolescents at relatively high-risk for AUD exhibit altered patterns of resting CBF in distributed corticolimbic regions supporting emotional behaviors.

The authors’ hypothesized that the relatively increased amygdala and ventromedial prefrontal CBF may contribute to increased emotional reactivity and sensitivity to environmental stressors in these individuals while diminished insula/occipital cuneus and dorsal anterior cingulate cortex (ACC) CBF may lead to poor integration of visceral and sensory changes accompanying such emotional stress responses and top-down regulation of amygdala reactivity.

Thus we see our model in a snapshot even in adolescents potentially.  The emotional processing deficits we have discussed previously implicate the insula and ACC, as there appears to be a difficulty in alcoholics in reading emotional or somatic signals/states and integrating these signals into the identifying, labelling and processing of emotions. Equally there appears to be a hyperactivty in the vmPFC and amgydala as with alcoholics which implies emotional dysregulation, a hyper reactive emotional response and a tendency perhaps to a more “fight or flight” response, distress based impulsivity and short termist decision making, wanting it NOW rather than later.

 

References Lin, A. L., Glahn, D. C., Hariri, A. R., & Williamson, D. E. (2008). Basal Perfusion in Adolescents at Risk for Alcohol Use Disorders. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 16, p. 60).

How far have we come in understanding this emotional disorder?

A constant thread throughout our blogs so far has been an assertion that alcoholism and addiction are primarily emotional regulation and processing disorders.

So we were thus  very interested to find this article (1) which describes how we are not the first to view alcoholism and addiction this way.

Here we use this article to present a  brief history of research, dating back to the 1930s, that has viewed alcoholism and addiction in a similar way to we do now in 2014.

 

“Life, as we find it, is too hard for us; it brings us too many pains, disappointments and impossible tasks. In order to bear it we cannot dispense with palliative measures. (…), intoxicating substances, which make us insensitive to it” (Freud, 1930, p. 75).

 

Rado (1933) was the first to describe substance use as a way of coping with excessively difficult states of emotions (3).

Others subsequently interpret the phenomena as a maladaptive way of fighting against stress, anxiety, and depression (4-6). Krystal and Raskin(1970) emphasize the undifferentiated and archaic, somatically manifested, emotions of persons suffering from addictive disorders (7).

These emotions are fixed at this level owing to their early traumatic nature.

Later, McDougall (1984) also highlighted the importance of overflowing emotions in the case of people with addictive disorders (8). He identified substanceuse as a compulsive way of canalizing these overflowing emotions. Conclusively, we can see that in all of these mainly psychoanalytically oriented theories, substance use is present as an instrument to regulate emotions.

This approach is elaborated unequivocally in the theories of Leon Wurmser and Edward J. Khantzian. According to Wurmser (1974), people with addictive disorders are unable to regulate their undifferentiated feelings, impulses, and pervasive internal stress, and so they turn to psychoactive substances (9). Their substance use can thus be recognized as an attemptat “self-treatment.” The self-medication hypothesis of Khantzian (1985) also highlights emotion regulation in the background of addictions (10).

He asserts that drug use in fact emerges as the common result of psychopharmacological functioning and overwhelmingly painful emotions. Like Wurmser, Khantzian also points out that the choice of substance is specific to the person’s self-regulation and affect-regulation problems, as well as his/her personality dysfunctions (11).

More recently we have had Cheetham’s affect- centred theories of addiction (12).

Apparently, clinical observations highlight mainly those dimensions in the background of psychoactive substance use—primarily the presence of undifferentiated, overflowing, dominantly negative and painful feelings, and difficulties in emotional expression and emotional regulation—which appear to be basic components of the later Emotional Intelligence (EI)  construct (13). For instance, according to Mayer and Salovey (1997), the main components of EI are: (1) the perception, appraisal, and expression of emotions; (2) the emotional facilitation of thinking; (3) understanding and analyzing emotions, and employing emotional knowledge; and (4) the regulation of emotions.

The most important empirical findings regarding our topic may be those studies, which attempted to explore the relationship between addictions and alexithymia.

The concept of alexithymia (14) was created by Ruesch (1948) but the definition of Nemiah and Sifneos is more widely known (15,16).

The four main characteristics of alexithymia are: (1) difficulty identifying feelings and distinguishing between emotions and corresponding bodily sensations; (2) difficulty describing feelings to others; (3) constricted imaginal life and fantasies; and (4) externally oriented cognitive style (17).

The relationship between alexithymia and emotional consciousness or emotional intelligence was confirmed by several studies (18-20). These studies pointed out that a low level of EI correlates with a high level of alexithymia.

These results are hardly surprising, given that the ability to identify and express emotions is an important component of EI.

Besides clinical observations (21), empirical studies have also shown that people with addictive disorders—mainly alcoholic patients or those diagnosed with eating disorders—have difficulties with the verbalization and expression of their feelings, so in their case the problem of alexithymia is more frequent than in the normal population (22-24)

One study looking at a meta analysis of research into emotional aspects of addiction (1) found – 12 of these studies solely measured the ability to identify emotions – Oscar-Berman and colleagues (1990) were the first to draw attention to the fact that alcohol addicts, especially those suffering from Korsakoff‘s syndrome, have difficulties in identifying and decoding emotions mediated by facial expressions (25).

Underlying the inaccuracy of decoding is the overestimation of intensity of emotions, especially negative ones, characteristic of alcohol patients (26-29). They also tend to associate negative emotions more often with each of the presented facial expressions (30). Furthermore, Kornreich and colleagues have pointed out that the ability to identify emotions is tightly and negatively associated with interpersonal problems, and these problems seem to be a mediating factor between emotional identification deficits and alcoholism (31). All of these findings may relate to results stating that people with alcohol addiction tend to interpret facial expressions, like sadness or disgust, falsely as emotions describing interpersonal conflicts, like anger or contempt (32).

This latter result is also supported by an Italian study (33). A further important outcome of these investigations showed that alcohol-addicted patients, in spite of their weaker capacity, rate these emotion-decoding tasks at the same difficulty level as do people from the control groups. It therefore seems as though they are not aware of their difficulties in identifying emotions.

At the same time, however, this distortion in the subjective ratings is not only characteristic of alcohol addiction, but is present in the case of opiate-addicted people as well (34,35). These studies also highlighted that alcoholism is associated with poorer emotion-decoding  abilities than compulsive use of opiates.

causes-of-addiction_mini

 

We have discussed emotional processing deficits in alcoholics and addicts in another blog.

The prevalence rate of alexithymia in alcohol use disorders is between 45 to 67% (36,37). Finn, Martin and Phil (1987) investigated the presence of alexithymia among males at varying levels of genetic risk for alcoholism. They found that the high risk for alcoholism group was more likely to be alexithymic than the moderate and low genetic risk groups (38).

The inability to identify and describe affective and physiological experiences is itself associated with the elevated negative affect (39) commonly seen in alcoholics, even in recovery (40). This latter study also highlighted the link between alexithymia and the emotional dysregulation inherent in addictive disorders.

Thus, the unpleasant “undifferentiated emotional” experience of early theories might prompt individuals to engage in maladaptive behaviors, such as excessive alcohol consumption, in an effort to regulate emotions, or, more specifically, cope with negative emotional states (41).

We now see how neurobiological models can marry statisfactorially wih psycho-analytic theories. This will be especially the case when we blog about alexithymia, addictive and theories of attachment.

We have thus moved from a mainly clinical perspective on the role of emotional difficulties in addiction to providing some neuroscientific evidence that these theories were actually on to something, namely these theories were pointing the way to further conceptualisations of addiction as a disorder of emotional regulation and processing. 

 

References

1. Kun, B., & Demetrovics, Z. (2010). Emotional intelligence and addictions: a systematic review. Substance use & misuse45(7-8), 1131-1160.

2. Freud, S. (1930). Civilization and its discontents. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund freud (Vol. 21, pp. 59–145). London: The Hogarth Press

3. Rado, S. (1933). The psychoanalysis of pharmacothymia (Drug Addiction). Psychoanalytic Quarterly, 2:1–23

4. Chein, I., Gerard, D. L., Lee, R. S., Rosenfeld, E. (1964). The road to H. New York: Basic Books

5. Fenichel, O. (1945). The psychoanalytic theory of neurosis. New York: Norton

6. Hartmann, D. (1969). A study of drug-taking adolescents. Psychoanalytic Study of the Child, 24:384–398.

7. Krystal, H., Raskin, H. A. (1970). Drug dependence. aspects of ego functions. Detroit: Wayne State University Press.

8.  McDougall, J. (1984). The “dis-affected” patient: reflections on affect pathology. Psychoanalytic Quarterly, 53:386–409.

9. Wurmser, L. (1974). Psychoanalytic considerations of the etiology of compulsive drug use. Journal of the American Psychoanalytic Association, 22:820–843.

10. Khantzian, E. J. (1985). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. American Journal of Psychiatry, 142:1259–1264.

11. Khantzian, E. J. (1991). Self-regulation factors in cocaine dependence – a clinical perspective. NIDA Research Monograph, 110:211–226.

12. Cheetham, A., Allen, N. B., Yücel, M., & Lubman, D. I. (2010). The role of affective dysregulation in drug addiction. Clinical psychology review30(6), 621-634.

13.  Mayer, J. D., Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. Sluyter (Eds.), Emotional development and emotional intelligence: implications for educators(pp. 3–31). New York: Basic Books.

14. Ruesch, J. (1948). The infantile personality. Psychosomatic Medicine, 10:134–144

15. Nemiah, J. C., Sifneos, P. E. (1970). Affect and fantasy in patients with psychosomatic disorders. In O. W. Hill (Ed.), Modern trends in psychosomatic medicine (Vol. 2, pp. 26–35). London: Butterworths.

16. Sifneos, P. E. (1967). Clinical observations on some patients suffering from a variety of psychosomatic diseases. Acta Medica Psychosomatica, 7:1–10

17.  Nemiah, J. C., Freyberger, H., Sifneos, P. E. (1976). Alexithymia: a view of the psychosomatic process. In O. W. Hill (Ed.), Modern trends in psychosomatic medicine (Vol. 3, pp. 430–439). London: Butterworths

18. Austin, E. J., Saklofske, D. H., Egan, V. (2005). Personality, well-being and health correlates of trait emotional intelligence. Personality and Individual Differences, 38:547–558.

19. Lane, R. D., Sechrest, L., Reidel, R., Weldon, V., Kaszniak, A., Schwartz, G. E. (1996). Impaired verbal and nonverbal emotion recognition in alexithymia.Psychosomatic Medicine, 58:203–210

20. Parker, J. D. A., Taylor, G. J., Bagby, R. M. (2001). The relationship between emotional intelligence and alexithymia. Personality and Individual Differences, 30:107–115.

21. Krystal, H. (1995). Disorders of emotional development in addictive behavior. In S. Dowling (Ed.), The psychology and treatment of addictive behavior(pp. 65–100). Madison, CT: International Universities Press.

22. Handelsman, L., Stein, J. A., Bernstein, D. P., Oppenheim, S. E., Rosenblum, A., Magura, S. (2000). A latent variable analysis of coexisting emotional deficits in substance abusers: alexithymia,
hostility, and PTSD. Addictive Behaviors, 25:423–428

23. Speranza, M., Corcos, M., Loas, G., Stephan, P., Guilbaud, O., Perez-Diaz, F., et al. (2005). Depressive personality dimensions and alexithymia in eating disorders.Psychiatry Research, 135:153–163.

24.Troisi, A., Pasini, A., Saracco, M., Spalletta, G. (1998). Psychiatric symptoms in male cannabis users not using other illicit drugs. Addiction, 93:487–492

25. Oscar-Berman, M., Hancock, M., Mildworf, B., Hutner, N., Weber, D. A. (1990). Emotional perception and memory in alcoholism and aging. Alcoholism: Clinical and Experimental Research, 14:383–393.

26. Foisy, M. L., Kornreich, C., Fobe, A., D’Hondt, L., Pelc, I., Hanak, C., et al. (2007a). Impaired emotional facial expression recognition in alcohol dependence: do these deficits persist with midterm abstinence? Alcoholism: Clinical and Experimental Research, 31:404–410

27. Kornreich, C., Blairy, S., Philippot, P., Hess, U., Noel, X., Streel, E., et al. (2001b). Deficits in recognition of emotional facial expression are still present in alcoholics after mid- to long-term abstinence. Journal of Studies on Alcohol, 62:533–542

28. Philippot, P., Kornreich, C., Blairy, S., Baert, I., Den Dulk, A., Le Bon, O., et al. (1999). Alcoholics’ deficits in the decoding of emotional facial expression. Alcoholism: Clinical and Experimental Research, 23:1031–1038

29. Townshend, J. M., Duka, T. (2003). Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions.Neuropsychologia, 41:773–782.

30. Foisy, M. L., Kornreich, C., Petiau, C., Parez, A., Hanak, C., Verbanck, P., et al. (2007b). Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues? Psychiatry Research, 150:33–41.

31. Kornreich, C., Philippot, P., Foisy, M. L., Blairy, S., Raynaud, E., Dan, B., et al. (2002). Impaired emotional facial expression recognition is associated with interpersonal problems in alcoholism. Alcohol and Alcoholism, 37:394–400

33. Frigerio, E., Burt, D. M., Montagne, B., Murray, L. K., Perrett, D. I. (2002). Facial affect perception in alcoholics. Psychiatry Research, 113:161–171

34. Foisy, M. L., Philippot, P., Verbanck, P., Pelc, I., Van Der Straten, G., Kornreich, C. (2005). Emotional facial expression decoding impairment in persons dependent on multiple substances: impact of a history of alcohol dependence. Journal of Studies on Alcohol, 66:673–681

35. Kornreich, C., Foisy, M. L., Philippot, P., Dan, B., Tecco, J., Noel, X., et al. (2003). Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Research, 119:251–260.

36. Loas G, Fremaux D, Otmani O, Lecercle C, Delahousse J. Is alexithymia a negative factor for maintaining abstinence? A follow-up study. Comprehensive Psychiatry. 1997;38:296–299.

37. . Ziolkowski M, Gruss T, Rybakowski JK. Does alexithymia in male alcoholics constitute a negative factor for maintaining abstinence. Psychotherapy and psychosomatics. 1995;63:169–173.

38. Finn PR, Martin J, Pihl RO. Alexithymia in males at high genetic risk for alcoholism.Psychotherapy and Psychosomatics.1987;47:18–21

39. 16.  Connelly M, Denney DR. Regulation of emotions during experimental stress in alexithymia. Journal of Psychosomatic Research. 2007;62:649–656

40. Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., Coffey, S. F., Schlauch, R. C., Bailey, S. T., … & Gulliver, S. B. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample.Addictive Behaviors37(4), 469-476.

 

41. Thorberg FA, Young RM, Sullivan KA, Lyvers M, Hurst CP, Connor JP, Feeney GFX. Alexithymia in alcohol dependent patients is partially mediated by alcohol expectancy. Drug and Alcohol Dependence. 2011;116:238–241

 

Emotional Dysregulation, recovery and relapse

Throughout our blogs thus far, we have attempted to highlight how emotional dysregulation appears to prevalent to all aspects of alcoholism and addiction from pre-morbid vulnerability to endpoint compulsive addictive behaviours.

Here we highlight a few articles which have considered how prevalent is emotional dysregulation in alcoholism and addiction in early abstinence/recovery. 

Early abstinence from chronic alcohol dependence is associated with increased emotional sensitivity to stress-related craving as well as changes in brain systems associated with stress and emotional processing.

Early abstinence from alcohol is associated with changes in neural stress and reward systems that can include atrophy in subcortical and frontomesal regions (1).

Moreover, recent imaging studies have shown that these brain regions are also associated with the experience and regulation of emotion (2).

While alcohol-related changes in emotion, stress and reward-related brain regions have been well documented difficulties in emotion regulation (ER) have not been studied much.

bar_of_destruction_1874__medium

One study (3) examined ER in early abstinent alcohol-dependent individuals compared with social drinkers using the Difficulties in Emotion Regulation Scale (DERS).

The DERS is an inclusive scale and defines ER in terms of four major factors: the understanding of emotion, the acceptance of emotion, the ability to control impulsive behavior and the ability to access ER strategies benefiting the individual and the specific goals of the situation. The scale has been validated in cocaine dependent patients (4) and on alcohol dependent individuals.

ER difficulties in treatment-engaged alcohol dependent (AD) patients during a period of early abstinence that is marked by an overall distress state. AD patients reported an overall problem with emotion regulation compared with SDs in the first few days of abstinence; in particular with emotional awareness and impulse control. Following protracted abstinence, AD patients significantly improved awareness and clarity of their emotional experience, and only significant problems with impulse control persisted.

This is consistent with neuro-imaging studies showing chronic alcohol abuse to be associated with stress and cue-related neuroadaptations in the medial prefrontal and anterior cingulate regions of the brain (6), which are strongly implicated in the self-regulation of emotion and behavioral self-control (7). As impulsivity in distress states may reflect a change in priority from self-control to affect regulation (8 ).

As we have seen in other blogs and articles (5) these areas are those which improve in short term abstinence/recovery.

Cocaine-dependent individuals also report emotion regulation difficulties, particularly during early abstinence (4). Additionally, protracted distress-related impulse control problems suggest potential relapse vulnerability Difficulties concerning emotional clarity and awareness compared with controls were observed which suggests that cocaine dependent individuals were less able to acknowledge and/or have a clear understanding of their emotions.

Clarity and awareness of emotions could represent early processing components of emotional competence (9) and may be integral to the maintenance of drug use.

The cocaine addicts appeared to have greater difficulty in developing effective emotional coping strategies  (i.e. they would be more likely to believe that little could be  done to change an emotionally stressful situations.) They were also found to report significantly higher scores on the Impulse subscale of the DERS compared with controls, indicating difficulties with regard to inhibiting inappropriate or impulse behaviors under stressful situations which can prompt relapse.

References

1. Bartsch, A. J., Homola, G., Biller, A., Smith, S. M., Weijers, H. G., Wiesbeck, G. A., et al. (2007). Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 130(Pt 1), 36−47

2. Fox, H. C., Hong, K. A., & Sinha, R. (2008). Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addictive Behaviors33(2), 388-394.

3. Ochsner, K.N., Gross, J.J., 2005. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249

4. Fox, H. C., Hong, K. A., & Sinha, R. (2008). Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addictive Behaviors33(2), 388-394.

5. Sinha, R., & Li, C. S. (2007). Imaging stress- and cue-induced drug and alcohol craving: Association with relapse and clinical implications. Drug and Alcohol Review, 26(1), 25−31.

6. Connolly, C. G., Foxe, J. J., Nierenberg, J., Shpaner, M., & Garavan, H. (2012). The neurobiology of cognitive control in successful cocaine abstinence. Drug and alcohol dependence121(1), 45-53.

7. Baumeister, R.F., Heatherton, T.F., Tice, D.M., 1994. Loosing Control: How and Why People Fail at Self-regulation. Academic Press, San Diego, CA

8.  Tice, D.M., Bratslavsky, E., Baumeister, R.F., 2001. Emotional distress regulation takes precedence over impulse control: if you feel bad, do it! J. Pers Soc. Psychol. 80, 53–67.

9. Salovey, P., Stroud, L.R., Woolery, A., Epel, E.S., 2002. Perceived emotional intelligence, stress reactivity, and symptom reports: further explorations using the trait Meta-mood scale. Psychol. Health 17, 611–627

 

What recovers in Recovery? – Cognitive Control over emotions?

A core aspect of alcohol dependence is poor regulation of behavior and emotion.

Alcohol dependent individuals show an inability to manage the appropriate experience and expression of emotion (e.g., extremes in emotional responsiveness to social situations, negative affect, mood swings) (1,2). Dysfunctional emotion regulation has been considered a primary trigger for relapse (1,3) and has been associated with prefrontal dysfunction.

While current alcohol dependence is associated with exaggerated bottom-up (sub-cortical) and compromised top-down (prefrontal cortex) neural network functioning, there is evidence suggesting that abstinent individuals may have overcome these dysfunctional patterns of network functioning (4) .

Neuro-imaging studies showing chronic alcohol abuse to be associated with stress neuroadaptations in the medial prefrontal and anterior cingulate regions of the brain (5 ), which are strongly implicated in the self-regulation of emotion and behavioral self-control (6).

One study (2) looking at how emotional dysregulation related to relapse, showed compared with social drinkers, alcohol-dependent patients reported significant differences in emotional awareness and impulse control during week 1 of treatment. Significant improvements in awareness and clarity of emotion were observed following 5 weeks of protracted abstinence.

Another study (7) which did not look specifically at emotional regulation but rather on the recovering of prefrontal areas of the brain known to be involved also in the inhibition of  impulsive behaviour and emotional regulation showed that differences between the short- and long-abstinence groups in the patterns of functional recruitment suggest different cognitive control demands at different stages in abstinence.

The long-term abstinent group (n=9) had not consumed cocaine for on average 69 weeks, the short-term abstinent (SA) group (n=9) had an average 0f 2.4 weeks.

Relative to controls, abstinent cocaine abusers have been shown to have reduced metabolism in left anterior cingulate cortex (ACC) and right dorsolateral prefrontal cortex (DLPFC), and greater activation in right ACC.

In this study  the abstinent groups of cocaine addicts showed more elevated activity in the DLPFC ; a finding that has also been observed in abstinent marijuana users (8).

The elevation of frontal activity also appears to undergo a shift from the left to right hemisphere over the course of abstinence.  Furthermore, the left inferior frontal gyrus (IFG) has recently been shown to be important for response inhibition (9) and in a task similar to that described here, older adults have been shown to rely more on left PFC (10). Activity observed in these regions is therefore likely to be response inhibition related.

The reliance of the SA group on this region suggests that early in abstinence users may adopt an alternative cognitive strategy in that they may recruit the LIFG in a manner akin to children and older adults to achieve behavioral results similar to the other groups.

In longer,  prolonged abstinence a pattern topographically typical of normal, healthy controls may emerge.
In short-term abstinence there was an increased inhibition-related dorsolateral and inferior frontal activity indicative of the need for increased inhibitory control over behaviour,  while long-term abstinence showed increased error-related ACC activity indicative of heightened behavioral monitoring.
The results suggest that the improvements in prefrontal systems that underlie cognitive control functions may be an important characteristic of successful long-term abstinence.

Another study (11) noted the loss of grey matter in alcoholism that last from 6–9 months to more than a year or, in some reports, up to at least 6 years following abstinence (12 -14).

It has been suggested cocaine abuse blunts responses in regions important to emotional regulation (15)

Given that emotional reactivity has been implicated as a factor in vulnerability to drug abuse (16)  this may be a preexisting factor that  increased the likelihood of the development and prolonging of drug abuse

If addiction can be characterized as a loss of self-directed volitional control (17),  then abstinence (recovery) and its maintenance may be characterized by a reassertion of these aspects of executive function (18)  as cocaine use has been shown to reduce grey matter in brain regions critical to executive function, such as the anterior cingulate, lateral prefrontal, orbitofrontal and insular cortices (19-24) .

The group of abstinent cocaine addicts (11) reported here show elevations in  (increased) grey matter in abstinence exceeded those of the healthy control in this study after 36 weeks, on average, of abstinence .

One possible explanation for this is that abstinence may require reassertion of cognitive control and behavior monitoring that is diminished during current cocaine dependence.

Reassertion of behavioral control may produce a expansion (25)  in grey matter  in regions such as the anterior insula, anterior cingulate, cerebellum, and dorsolateral prefrontal cortex .

All brain regions implicated in the processing and regulating of emotion. 

 

References

 

 

1. Berking M, Margraf M, Ebert D, Wupperman P, Hofmann SG, Junghanns K. Deficits in emotion-regulation skills predict alcohol use during and after cognitive-behavioral therapy for alcohol dependence. J Consult Clin Psychol. 2011;79:307–318.

2.  Fox HC, Hong KA, Sinha R. Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Alcohol Clin Exp Res. 2008;33:388–394.

3..Cooper ML, Frone MR, Russell M, Mudar P. Drinking to regulate positive and negative emotions: A motivational model of alcohol use. J Pers Soc Psychol. 1995;69:990

4. Camchong, J., Stenger, A., & Fein, G. (2013). Resting‐State Synchrony in Long‐Term Abstinent Alcoholics. Alcoholism: Clinical and Experimental Research37(1), 75-85.

5. Sinha, R., & Li, C. S. (2007). Imaging stress- and cue-induced drug and alcohol craving: Association with relapse and clinical
implications. Drug and Alcohol Review, 26(1), 25−31.

6. Beauregard, M., Lévesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of
Neuroscience, 21(18), RC165

7. Connolly, C. G., Foxe, J. J., Nierenberg, J., Shpaner, M., & Garavan, H. (2012). The neurobiology of cognitive control in successful cocaine abstinence. Drug and alcohol dependence121(1), 45-53.

8.  Tapert SF, Schweinsburg AD, Drummond SP, Paulus MP, Brown SA, Yang TT, Frank LR. Functional MRI of inhibitory processing in abstinent adolescent marijuana users.Psychopharmacology (Berl.) 2007;194:173–183.[PMC free article]

9. Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008;9:102.[PMC free article]

10. Garavan H, Hester R, Murphy K, Fassbender C, Kelly C. Individual differences in the functional neuroanatomy of inhibitory control. Brain Res. 2006;1105:130–142

11. Connolly, C. G., Bell, R. P., Foxe, J. J., & Garavan, H. (2013). Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PloS one8(3), e59645.

12. Chanraud S, Pitel A-L, Rohlfing T, Pfefferbaum A, Sullivan EV (2010) Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry. Neuropsychopharmacol 35: 1868–1878 doi:10.1038/npp.2010.56.

13.  Wobrock T, Falkai P, Schneider-Axmann T, Frommann N, Woelwer W, et al. (2009) Effects of abstinence on brain morphology in alcoholism. Eur Arch Psy Clin N 259: 143–150 doi:10.1007/s00406-008-0846-3.

14.  Makris N, Oscar-Berman M, Jaffin SK, Hodge SM, Kennedy DN, et al. (2008) Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64: 192–202 doi:10.1016/j.biopsych.2008.01.018.

15, Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, et al. (2004) Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci 16: 456–464 doi:10.1176/appi.neuropsych.16.4.456.

16.  Piazza PV, Maccari S, Deminière JM, Le Moal M, Mormède P, et al. (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc Natl Acad Sci USA 88: 2088–2092. doi: 10.1073/pnas.88.6.2088

17.  Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159: 1642–1652. doi: 10.1176/appi.ajp.159.10.1642

18. Connolly CG, Foxe JJ, Nierenberg J, Shpaner M, Garavan H (2012) The neurobiology of cognitive control in successful cocaine abstinence. Drug Alcohol Depend 121: 45–53 doi:10.1016/j.drugalcdep.2011.08.007.

19.  Liu X, Matochik JA, Cadet JL, London ED (1998) Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacol 18: 243–252 doi:10.1016/S0893-133X(97)00143-7.

20.  Bartzokis G, Beckson M, Lu P, Nuechterlein K, Edwards N, et al. (2001) Age-related changes in frontal and temporal lobe volumes in men – A magnetic resonance imaging study. Arch Gen Psychiatry 58: 461–465. doi: 10.1001/archpsyc.58.5.461

21. Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, et al. (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 51: 134–142. doi: 10.1016/s0006-3223(01)01269-0

22.  Matochik JA, London ED, Eldreth DA, Cadet J-L, Bolla KI (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. NeuroImage 19: 1095–1102. doi: 10.1016/s1053-8119(03)00244-1

23.  Lim KO, Wozniak JR, Mueller BA, Franc DT, Specker SM, et al. (2008) Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend 92: 164–172 doi:10.1016/j.drugalcdep.2007.07.019.

24.  Ersche KD, Barnes A, Jones PS, Morein-Zamir S, Robbins TW, et al. (2011) Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134: 2013–2024 doi:10.1093/brain/awr138.

25.  Ilg R, Wohlschlaeger AM, Gaser C, Liebau Y, Dauner R, et al. (2008) Gray matter increase induced by practice correlates with task-specific activation: A combined functional and morphometric magnetic resonance Imaging study. J Neurosci 28: 4210–4215 doi:10.1523/JNEUROSCI.5722-07.2008.

 

Intolerance of Uncertainty

Like many recovering alcoholics I know I have a real problem with “Not projecting into the future” but staying in the moment or even the day. Why is this? When I “project” or even consider a near future event I can feel distressed by it. I want to do something about it now! Not later.

The future seems to be urgently now.

I have long researched why this is? I seem to become overwhelmed at times by future tense and it is not even due to future events being that distressing in themselves. I just have this constant need to act now rather than later. I have an urgency or a negative urgency or in other words a  distress based impulsivity which prompts a desire to act now, make a decision now rather than later. I call this a compulsion to act  because a distress state compels me to make a decision to act now.

As I have mentioned in previous blogs, alcoholics appear to have a bias in decision making towards choose the short term solution over a long term one, even though the long term solution will yield greater gains. There are various  theories on why this is so. Sometimes it appears like a “fight or flight” response!

My theory is that I am very poor at tolerating uncertainty and what is the future but uncertain. I have  an “unconscious” negative bias about the future, linked at times to a tendency to then catastrophize.

This intolerance of uncertainty is seen in other disorders, such as anxiety, obsessive-compulsive and post traumatic stress disorders as well as in eating disorders but it is rarely researched in alcoholism.

I believe when confronted with a decision about the future I often make a decision to relieve a distress which manifests as an unpleasant feeling state which compels me, via a stimulus response to act now. Distress is the stimulus, acting now is the response.

I am not saying that I have to be in a negative frame of mind for this to occur. It is simply a decision making bias I have when left to my own devices.   It is the reason I speak to others when making important decisions in life because the need to relief distress can show in the mind as a good idea when it is often on reflection not such a great idea.

This is due to distress being a stress-fuelled experience and excessive stress reduces the awareness of future consequence of a decision. It seems like a good idea at the time because it relieves distress. To the brain this is a good idea.  It is a automatic response of the dorsal striatum, an implicit memory (procedural) system, that requires one to retrospectively rationalise and justify the automatic responding of this area of the brain, it justifies a previous action in other words, thus a decision is represented in the mind as a good idea, what was most urgently required!

These rationalisations and justifications through time can become automatic schemas and are automatically activated following a compulsive response. Some of us are probably familiar with these schemas being a big part of our alcohol and drug use. As we needed to use, we had automatic addiction schemas following shortly after our decisions to head to the pub or to score some drugs or even to propel some decisions, as the consequence of distress states. It is these habitual response, based on distress states which bias decisions making to acting now, even in recovery.

I came across an article (1) which looked at this intolerance of uncertainty in relation to decision making and came up with similar conclusions to the above. “high IU (intolerance of uncertainty) predicted shorter wait times and more frequent selection of the immediate, less valuable (and riskier) reward. We take this tendency as evidence that IU was associated with an aversion to waiting in a state of uncertainty. One might argue that choices for the more immediate, less valuable reward might reflect an aversion to waiting per se…, the delay associated with the more valuable reward in the
current study appears to have magnified the unpleasant affective responses to uncertainty… delay is provoking unpleasant affective responses, choices for the smaller, immediate reward can be seen as avoidance of distress.” Decisions are thus like an “escape route” and more based on emotional avoidance.  “That is, the affective consequences of uncertainty may play a more central role in determining behavior than uncertainty itself…decision  making tendencies among those high in IU may be maintained through negative reinforcement…to  reduce or eliminate affectively unpleasant circumstances that accompany waiting in uncertainty.”

These “unpleasant affective responses” are distress based and lead to a negative urgency to act now.

References

1. Luhmann, C. C., Ishida, K., & Hajcak, G. (2011). Intolerance of uncertainty and decisions about delayed, probabilistic rewards. Behavior therapy42(3), 378-386.