This Fleshy Hunger

In our sister blog Inside the Alcoholic Brain –  http://insidethealcoholicbrain.com/

I had a comment posted on one of the blogs about the pain and heartache that one person had faced as the result of her partner’s addictive behaviour.

The person who posted mentioned her ex partner who is a sex addict as well as alcoholic/addict. It really moved me what the person, who posted anonymously, said in her comment.

I identified with the breaking of her trust and her heart by the unacceptable behaviour of her ex.

Addicts can leave a wake of destruction, lies and deceit, broken promises and broken hearts. In the Big Book of AA it looks at the effects of the life with an alcoholic as akin to having had a tornado wreck havoc in  your life, with the alcoholic often causing so much wreckage  without fully realising it.

This comes across strongly in this post, which I use below, as it was posted publicly and the person was also anonymous.   I use this post to help me and help others understand more fully the damage addiction, especially sex addiction can cause others.

I failed to mention something in my reply, below, which I will now add.

I know where her ex partner is coming from because I too am a sex addict.

I have never admitted that to anyone other than my wife. I have been in recovery ten years but have only realised in the last 15 months or so that I too suffer from sex addiction, in addition to alcoholism, substance addiction, chronic attachment disorder and PTSD.

sex-addiction-eye (1)

Even now I find it difficult to be honest about my sex addiction. It seems to me much more shameful than saying I am a chronic alcoholic or addict.

Maybe that is irrational but I am just trying to be honest.

If any addiction could embody and illustrate the conditional love I was reared with it is my sex addiction.

As I mention in my reply to the post below, in sex addiction somewhere in one’s personal development the brain gets fused in a manner so profound that close intimate human affection can often be just about the most terrifying experience because we don’t really know what the hell it is.

If one has not experienced unconditional love in their primary attachment relationships to a primary care giver, e.g. one’s mother, then the brain may not develop in the same way as with unconditional love – it will be a brain that has distress and a excess of stress chemicals and a deficit in oxytocin,  the “love/cuddle” chemical of human bonding.

Intimacy can be frightening in the extreme.

The human heart is born to beat a beat of love and to have an automatic approach to the love of other humans. In fact we are not singular – we are born into the world as “I and one other”, as we would die otherwise, we need to be reared as we are helpless alone.

So when the heart is naturally moved towards a love attachment which is inconsistent, ambivalent, alternatively available then dismissive and distant, then the most basic survival instinct is impaired, warped, and love of the most basic fundamental type can be mixed with fear and stress chemicals with distress.

Love is the most  fundamental “glue” in the  brain and human development so when it is not consistently given it can have profound effect on the developing infant brain.

Some would say that being conditional it is  not real love but it is as close as some got. “Love” for some often had love mixed with or outweighed by fear, or oxytocin by stress chemicals in the brain.

While a child is looking to receive their love and “cuddle” chemical, that of oxytocin but it is not always available, in that it is shrunk away in the brain by stress chemicals. This reduces oxytocin and the heightened stress chemicals reduce this oxytocin even more.

I grew up then looking for “love” – this oxytocin but unfortunately it is not straight forward. This search is for a conditional loves as it is all I knew, it is not for a fullsome healthy unconditional love but for a “love” that will alleviate our distress and increase our oxytocin. I searched for this thing, this “love” in  sexual acts.

Sex, and reproduction, are fundamental to the human species so it is another “survival instinct” that gets impaired in the addiction cycle – in fact all addictions involve the usurping of systems essential for survival – eating, sex, money, motivation etc and all addictions take over the reward/motivational region of the brain.

Sex addiction does the same – this is also why we see cross addictions as different addictions all activate this same reward/motivational part of the brain.

Back to sex addiction, I grew up through puberty to adulthood with this  now constant battle in my heart between two chemicals that interact to help us survive via our human relationships and communities. Now they interact in the way most opposite to healthy survival. The compete and fight and are conditional on the behaviour of the other.

The are two partners in a dance of destruction. Their neuro-chemical offspring is dopamine – the chemical of wanting (needing). The battle between stress and oxytocin results in a pathological wanting (needing), peaks of dopamine when distressed with dopamine increase reflect the need to take action to relive distress. .

Distress is the result of never finding relief in human relationships, in human bonding, in healthy relationships, so healthy human love and bonding is replaced by the need relieve the inherent distress in an activity which guarantees a reduction in stress. In an activity guaranteed to increase in oxytocin. Sex with another human being, a fleeting physical intimacy.

That is a role oxytocin has, to reduce stress/distress (and control dopamine)  via human contact. If that contact was never there fully it never played a role in our survival. Instead we have to find this oxytocin elsewhere, like alchemists, outside healthy human bonding.

I found it via a different  type of “love”. A so-called love making when it was really an approximate transient glimpse of intimacy, or the opposite of intimacy in fact, a refuting of intimacy, instead simply a transient increase in our love making chemical. It feels like a yearning for something always beyond one’s reach but something that feels somehow essential and has to be got.

A fleshy hunger.

But these fleeting “intimacies” didn’t work, it wasn’t enough to still our hearts and reassure us, it was a temporary harbour in a storm of distress.

When it calms, I was left with the receding tides of shame, shame and more shame. It wasn’t enough, I wasn’t enough. And the distress cycle begins again.

Every time I searched for this love I ended with less than before.

Anyway here are the comments.

“I discovered that he had been seeing a secret drinking/ sex partner the entire time, one 5 years older that his daughter who, by cultural standards, was not attractive. The phone I finally looked at showed that, in addition to worshiping him as a senior co-worker, she was a great devotee of 50 Shades and all night activity. I had noted only a lack of interest in me – which I attributed to his passing age 50. The crafty extremes he went to to hide this affair from me while cutting as close as possible the encounters he had with the two of us was completely out of character in terms of the persona he showed me. Still, I have felt stupid for the extent of my trust.

Reading this and Part 1 have offered me great comfort. He was definitely denied affection in his youth, and is definitely a late stage alcoholic, but is tested for drugs frequently by work. Sex does not show up in lab work, I guess. Thanks for this very helpful post.”

Part of my Reply –

“thank you Anonymous for your honest post – can I also suggest this post Looking for love in all the wrong places –http://insidethealcoholicbrain.com/2015/07/02/looking-for-love-in-all-the-wrong-places/ – which looks at how lack of attachment in childhood to a primary care giver has dire consequences in terms of later adult relationships – where sex is used instead of intimacy – it is also probably more common than mentioned, the cross addiction of sex and other addictive behaviours like alcoholism – anecdotally I know it to be an issue in recovery for many. There is often a migration from one addiction to another mainly because we generally use and have used external means to regulate negative emotions and negative self schema. We probably have done so one way or the other since childhood. Emotional relationships for some are terrifying, full of angst, conflict etc and have not been straightforward, unconditional love relationships like many people have experienced. In fact relationships with sex addicts often have an element of conditional love about them as this is generally how addicts have grown up to understand relationships, as being conditional, if you do this I will do that, type thinking. I give you this and you give me that etc etc Sex addiction runs very deep as it is linked to an impaired ability to form loving, healthy relationships throughout one’s life and the relationships in a sex addict sense are often abusive, often in a dominant/domineering sense. The sex addict brain can often fuse what should be affection with arousal. Often “good looks” are not that much of an issue, it is often what the person “can do” sexually that is the main consideration. What sort of “fix” that they can offer. Sex does show up in labs in the sense that sex addiction activates the same brain areas as any other addictions and similar neurotransmitters like dopamine. A fascinating thing however is that sex gives one a “shot” of oxytocin which is the “love/cuddle” brain chemical and which is there in major amounts during caring for a child and in human bonding, in attachment to another human being. In sex addicts this might actually be the so-called “hole in the soul” the “love” drug we have all been looking for. So the sex addict brain has been fused to confuse human affection with arousal as oxytocin is activated and prompts the addict to want more of what he/she does not have in great supply namely oxytocin. Sometimes addiction seems like it is a compulsion to “replenish” chemicals one is deficient in, e.g. natural opioids and heroin abuse. I hope you continue to have the compassion you seem to have through your understandable hurt and upset – it sounds like a real rollercoaster you have been through. He is a very very sick (mentally) sick person like all addicts of one hue or the other. The problem also is that we sometimes are the last to see how sick our behaviours can be. Forgiveness is maybe a long way off, but in the end this heals the pain of the past more than anything else. It helps you just as much if not more than the person who has really hurt you. Hope this comment helps you too. Paul

The terror of “Locked In” Attention!

I remember when I was in the first days, weeks and months of early recovery I used to give myself such a hard time when my attention was drawn to some alcohol-related cue, like someone drinking ,or finding it difficult not dealing with some  reminder of people places and things from my alcohol abusing past; finding that I found it nigh on impossible dragging my attention away from these and related memories associated with my drinking past.

It was as if I was entranced by it, in some of tunnel vision. It used to scare the life out of me.

I rarely found these thoughts appetitive but if I dwelt on these thoughts or trained my attention on cues I would find that the adverse, fearful things would turn to more desire based physiological reactions like salivating and so on.

I took these to mean that I actually wanted to drink and not stay sober. My sponsor at the time said two things which helped – a. I have an alcoholic brain that wants to drink period, 2. cues from my past may always have this effect on me. Accept it, don’t fight it.

That was what I had been doing in fact. Fighting it, these cues reminders and their automatically occurring intrusive thoughts about the past. It is in fighting these thoughts that they proliferate and then become “craving”.

Years later after much research I found that all alcoholics seem to have an attentional bias towards alcohol-related cues which leads to a cue reactivity.

Originally I thought this meant that I simply wanted to drink but found out that in  any manifestation of urge to drink (which is slightly different from a craving which requires an affective response on the part of the alcoholic in order to become a craving similar to mental obsession of the Big Book ) there is a stress reponse like the hear beat quickening, differences in galvanic skin conductance, increased saliva production etc .

Thus this cue reactivty seems to involve not only appetitive or desire states, i.e. it activates the reward system in the brain to motivate one to drink but also contains a stress based reactivity.

Any so-called “craving” state also manifests as either an anxiety state in simple cue reactivity e.g. the sight of alcohol or in negative emotions such as fear, anger and sadness in terms of a stress based craving.

Together, i.e. a cue based reactivity in the face stress/distress leads to a greater urge to drink than by either alone. By reacting to these one is increasing the stress/distress.

To the alcoholic brain having a drink or the desire to drink is the brain suggesting to us as alcoholics that this is the best way to attain transient homeostasis from an allostatic state of distress because this is how we used to balance the effects of emotional distress when we were drinking. We experience distress and automatically had thoughts about drinking. Thus alcoholism is a distress-based condition. We think it is us wanting the drink but it is the distress prompting the wanting of the drink!!

The distress does the drinking for us, itgets us out of our seats and down the street to the bar, it gets us on the bar stool….We may think it is our actions as we use rationalisng and justifying schemata afterwards to justify behaviour that had, in fact, been automatic or compulsive, compulsive meaning to relieve a distress state.

As a schema, which is implicit, i.e. it is automatically prompted and activated by distress also. We are not even in charge of this. We feel and think that we are in control over behaviour bit this is not the case as self control has become so impaired and limited it is distress doing the action and the subsequent rationalising.

The compusive part of the brain, the dorsal striatum, is the only part of the brain that requires us to make a post hoc rationalisation of why we did an action that was essentially automatic and compulsive.

We have become passengers in our own lives. Distress is now doing the driving.

So the brain thinks it is simply telling us the best way to survive this distress or in other words to regulate this distress. Thus it is an incredibly impaired way to regulate stress and emotional distress.

I want to further explain how some of this is linked to low heart rate variability. If we have low HRV we find it difficult inhibiting automatic responses and in changing behaviour. We become behaviourally rigid, and locked into attending to things like cues when we don’t really want to.

This is often the result of distress reducing the ability of the heart rate variability to inform and change our responses.

I cite and use excerpts form one of my favourite articles again by co-authored by Julian Thayer (1).

 

“The recovering alcoholic must face the difficulty of having his or her ambition to remain abstinent challenged in various situations in which memories about the pleasurable effects of alcohol are activated and the striving for abstinence no longer seems meaningful (Anton 1999; Marlatt and Gordon 1985). The odds for successful coping with such temptations are related to numerous factors, such as one’s subjective affective state and the ability to shift one’s focus from the automatic impulse to drink toward a cognitive reconstruction of the situation (Palfai et al 1997b; Tiffany 1990). Despite the importance of  attentional flexibility in effectively modulating such “highrisk” situations, research on the topic is scarce.

Thayer and Lane (2000) suggested that the interplay between positive (excitatory) and negative (inhibitory) feedback circuits in the nervous system (NS) allows for flexible and adaptive behavior across a wide range of situations. The uniqueness of this model lies with its emphasis on the importance of inhibitory processes in effective modulation of affective experience. In short, these researchers propose that the defects in neurovisceral regulation of affective experience seen in various psychiatric conditions (e.g., anxiety disorders) may be better explained by faulty inhibitory function in the NS than by unitary arousal models.

Tonic heart rate variability (HRV) may be a physiologic indicator of such inhibitory processes (Friedman and Thayer 1998a; Porges 1995). Heart rate variability refers to the complex beat-to-beat variation in heart rate produced by the interplay of sympathetic and parasympathetic (vagal) neural activity at the sinus node of the heart.

Importantly, heart rate (HR) is under tonic inhibitory control via the vagus nerve (Levy 1990). These neural connections to the heart are linked to brain structures involved in goal-directed behavior and adaptability (Thayer and Lane 2000). Compelling evidence now exists to show that high levels of HRV are related to cognitive flexibility (Johnsen et al 2003), modulation of affect and emotion (see Bazhenova 1995, cited in Porges 1995), and increased impulse control (Allen et al 2000; Porges et al 1996).

The hypothesis that reduced HRV is related to defective affective and emotional regulation has been supported in recent research in which reduced HRV was present in clinical disorders such as generalized anxiety disorder (Thayer et al 1996), panic disorder (Friedman and Thayer 1998b), posttraumatic stress disorder (Cohen et al 1997) several scientific arguments suggest that impaired inhibitory function may play a role in chronic alcohol abuse.

First, alcoholics have repeatedly been shown to have problems shifting attention and directing their attention away from task-irrelevant information (Johnsen et al 1994; Setter et al 1994; Stormark et al 2000). Second, frontal areas of the brain are most affected by the acute and chronic effects of alcohol, and these structures are of crucial importance in inhibitory functioning and self-control (Lyvers 2000). Third, acute effects of alcohol ingestion result in reductions in HRV, implying that chronic alcohol ingestion may result in a long-lasting impairment of the vagal modulation of HR (Reed et al 1999; Weise et al 1986)

Fourth, severely dependent alcoholics show a sustained phasic HR acceleration when processing alcohol information, indicating defective vagal modulation of cardiac function (Stormark et al 1998). Tonic HRV has similarly been found to be a useful measure of physiologic activity in challenging situations (Thayer and Lane 2000). Appropriate modulation of HRV (increases, decreases, or no change) depends on the type of challenge and the characteristics of individuals as they interact with specific contextual manipulation (Friedman and Thayer 1998a; Hughes and Stoney 2000; Porges et al 1996; Thayer et al 1996).

For example, during attention demanding tasks, healthy individuals show appropriate reductions in HRV (Porges 1995). In general, high tonic levels of HRV allow for the flexible deployment of organism resources to meet environmental challenges. With respect to attention, it is suggested that high levels of HRV reflect flexible attentional focus, whereas low HRV is related to “locked in attention” (Porges et al 1996). Moreover, increased tonic vagal activity is related to adaptive development and lack of behavioral and emotional problems (Hughes and Stoney 2000; Porges et al 1996).

Furthermore, it has been demonstrated that increases in vagal activity during challenging tasks discriminates between individuals who have experienced traumatic events and managed to recover from them and those who still suffer from chronic symptoms of posttraumatic stress (Sahr et al 2001). Such increases in vagal activity during challenging tasks are particularly interesting because studies on alcohol abusers have found increases in HRV after exposure to alcohol-related cues (Jansma et al 2000; Rajan et al 1998).

One could speculate that such enhanced vagal activity could be a sign of compensatory coping aimed at taming automatic drinking related processes (Larimer et al 1999). Such an interpretation is in agreement with cognitive theories predicting that alcoholics and other drug users do not simply respond passively to exposure to drug-related cues, but, on the contrary, in such situations conscious processes are invoked, inhibiting execution of drug-related cognition (Tiffany 1990, 1995). If this explanation is correct, alcoholics who have more effective coping resources should show stronger increases in vagal activity during such challenging exposure than alcoholics who express greater difficulty in resisting drinking-related impulses.

Also  general differences in HRV between alcoholics and nonalcoholics are interesting indicators of defective inhibitory functioning, a measure of rigid thought-control strategies and lack of cognitive control should be an important indicator of defective inhibitory function and “positive feedback loops” reflected as low HRV (Wegner and Zanakos 1994).

Linking these measures to the physiologic index of HRV makes a stronger case for attributing reduced vagal tone (HRV) to a defective regulatory mechanism resulting in unpleasant affective states and maladaptive coping with psychologic stressors

The main results of our study may be summed as follows. First, as expected, alcoholic participants had lower HRV compared with the nonalcoholic control group. Second, the imaginary alcohol exposure increased HRV in the alcoholic participants. Third, across the groups, an inverse association was found between HRV and negative mood and a positive association between positive mood and HRV. Fourth, HRV was negatively correlated with compulsive drinking during the imaginary alcohol exposure in the alcoholic participants. Fifth, within the alcoholic group, HRV was negatively associated with chronic thought suppression (WBSI).

Generally, these findings are in agreement with the neurovisceral integration model and the polyvagal theory that suggests HRV is a marker of the level of cognitive, behavioral, and emotional regulatory abilities (Thayer and Lane 2000).

The fact that the alcoholic group had generally lower tonic HRV compared with the nonalcoholic control group indicates that such reduced HRV may also be a factor in alcohol abuse; however, such group differences in HRV provide only indirect support for the theory that low HRV in alcoholics may be related to impaired inhibitory mechanisms

Because HRV is related to activity in frontal brain areas involved in cognition and impulse control (Thayer and Lane 2000), we speculated that tonic HRV would be an index of nonautomatic inhibitory processes aimed at suppressing and controlling automatic drug-related cognitions. To test this hypothesis more directly, the association between HRV and problems with controlling drinking-related impulses were studied.

Consistent with this hypothesis, the compulsive subscale of the OCDS was found to be inversely associated with HRV in the alcohol-exposure condition, thus suggesting that HRV may be an indirect indicator of the level of impulse control associated with drinking. These findings are therefore consistent with Stormark et al (1998), who found that sustained HR acceleration (lack of vagal inhibition) when processing alcohol-related information was related to compulsive drinking and “locked-in attention.”

Post hoc analysis further suggested that alcoholics who expressed a relatively high ability to resist impulses to drink (OCDS) had the clearest increase in HRV under the alcohol exposure this study suggests that alcoholics may actively inhibit or compensate for their involuntary attraction to alcohol-related information by activation of higher nonautomatic cognitive processes (Tiffany 1995). Such conscious avoidance has previously been demonstrated in studies on attentional processes in alcoholics (Stormark et al 1997) and by the fact that frontal brain structures involved in inhibition and control of affective information are often highly activated in the processing of alcohol related cues (Anton 1999). Furthermore, this interpretation is in agreement with other studies suggesting that high HRV during challenging tasks is associated with recovery from acute stress disorders (Sahr et al 2001).

Several studies have indicated that low HRV is associated with impaired cognitive control and perseverative thinking (Thayer and Lane 2002). Consistent with these reports a negative association was found between HRV and chronic thought suppression. The WBSI assesses efforts to eliminate thoughts from awareness while experiencing frequent intrusions of such “forbidden” thoughts and thus represents an interesting and well-validated measure of ineffective thought control (Wegner and Zanakos 1994). Thought suppression has been found to be an especially counterproductive strategy for coping with urges and craving (Palfai et al 1997a, 1997b) and may even play a causal role in maintaining various clinical disorders (Wenzlaff and Wegner 2000).

To our knowledge, this is the first time a link between physiologic indicators of a lack of cognitive flexibility (low HRV) and chronic thought suppression has been demonstrated.

Thayer and Friedman (2002) have reviewed evidence indicating that there is an association between vagally mediated HRV and the inhibitory role of the prefrontal cortex. Consistent with Thayer and Lane (2000), this study suggests that impaired inhibitory processes are significantly related to ineffective thought control.

The fact that this association between HRV and WBSI was only found in the alcoholics may be related to the fact that only this clinical group shows signs of such faulty thought control.

Wegner and Zanakos (1994) suggested that thought suppression is particularly ineffective when the strategic resources involved in intentional suppression are inhibited or blocked (Wegner 1994). Consistent with this hypothesis, our findings show that those reporting high scores on WBSI show signs of impaired inhibitory functioning as indexed by low vagally mediated HRV.”

This excellent article fro me is also alluding to the fact that those with increased HRV was related to successfully related to regulating negative emotion,  stress/distress and affect, not just the thoughts that these affective states gave rise to .

Thus any strategies that help with improving  the ability to increase HRV will likely have positive results in coping with cue associated materials.

We look at one of these therapeutic strategies next…that of mindfulness meditation.

 

References

1. Ingjaldsson, J. T., Laberg, J. C., & Thayer, J. F. (2003). Reduced heart rate variability in chronic alcohol abuse: relationship with negative mood, chronic thought suppression, and compulsive drinking. Biological Psychiatry54(12), 1427-1436.

 

 

 

The Heart of Recovery

How is low HRV related to longer term recovering alcoholics?

We cited and use excerpts from a study (2) into short term and longer term (3) of up to six months which shows that alcoholics with years of recovery still have low HRV although it improves although this is dependent of severity of the alcoholism.

“It is known that chronic and heavy alcohol use has a toxic effect on the nervous system,[2] including effects on autonomic nervous system.[3] Specifically, heavy alcohol use can cause cardiac autonomic neuropathy,[4] which in turn, is associated with greater mortality.

Resting cardiac autonomic function reportedly favors energy conservation by way of parasympathetic dominance over sympathetic influence. Heart rate is characterized by beat-to-beat variability over a wide range, which has been reported to indicate vagal dominance and thereby parasympathetic dominance.[5]

In those with alcohol dependence, HRV is lower than in healthy individuals even after several days of abstinence.[13,14] This decrement may improve with abstinence for long periods of time.[15,16]

A study of 24-h ambulatory HRV found significantly reduced HRV in alcohol-dependent men with established vagal neuropathy and in some without.[17] Alcohol dependence has been shown to compromise vagal output measured before sleep onset, which correlates with loss of delta sleep and morning sleep impairments.[18]

Reduced HRV was found in alcohol-dependent patients with negative mood states and compulsive drinking.[19] Rechlin et al.,[20] reported reductions in HRV in patients with alcohol dependence, and this has been consistently reported in subsequent studies.[21,22]”

 

“Heart rate variability (HRV) was studied in 11 chronic alcoholic subjects, 1–30 days after the beginning of abstinence and again 5, 12 and 24 weeks later. Two patients could be re-examined after 19 and 22 months, respectively. In the follow-up study, the total patient group showed a statistically significant increase in HRV with prolonged abstinence of at least 6 months.

No recovery of efferent vagal function was found in 4 patients. It is suggested that the vagal neuropathy may improve in chronic alcoholics, but perhaps only in patients with a short to moderately long duration of drinking history (3)”.

Thus it seems thee is a partial recovery in HRV as recovery proceeds although there may be work required depending on severity of one’s alcoholism.

In our next blog on HRV we will cite and use excerpts from one of the best articles authored by Thayer which is the best explanation of how low HRV keeps an alcoholics attention “locked in” to stuff he/she would rather it didn’t get locked into such as alcohol-related cues.

References

1. THAYER, J. F., AHS, F., FREDRIKSON, M., SOLLERS, J. J., & WAGER, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health.Neuroscience and biobehavioral reviews, 36(2), 747-756.

2. Ganesha, S., Thirthalli, J., Muralidharan, K., Benegal, V., & Gangadhar, B. N. (2013). Heart rate variability during sleep in detoxified alcohol-dependent males: A comparison with healthy controls. Indian journal of psychiatry, 55(2), 173.

3. Weise, F., Müller, D., Krell, D., Kielstein, V., & Koch, R. D. (1986). Heart rate variability in chronic alcoholics: a follow-up study. Drug and alcohol dependence, 17(4), 365-368.

Recovery is a Journey from the Head to the Heart (and back)!

PART 2 

So what does this low HRV mean for the recovering alcoholic?

I have explained this to show that HRV is directly connected to areas of the the brain implicated in stress and emotion regulation.

If, via recovery practices, we can still our beating heart, become serene as well as clean, it will have neuroplastic effects on our brain and the regulation of emotion and stress.

Equally if we meditate and alter the functioning of areas implicated in this study such as areas of the medial PFC and cingulate gyrus we improve our control over our heart. Ultimately if we can learn to relieve the inherent distress at the heart of addiction we can recovery function of not only the heart but also of areas in the brain which interact with the heart in producing heart rate variability.

So ultimately we need only to know how to quell a distressed heart via prayer, meditation, loving others.

If we can do so, we improve our emotion and stress regulation.

But do we need to do this if we have been in recovery long term?

Let me give you an example of allostasis in action.

In an allostatic system like addiction there is stress dysregulation coupled with reward dysfunction (I believe there is a pre-morbid allostasis in those addicts who have experienced abuse, trauma and insecure attachment also which means there is a stress and emotion dysregulation from an early age which leads to a heightened reward sensitivity which means we start to regulate negative emotions from an early age via impulsively  using or consuming stuff we really really like, or seem to like more than healthy people, to make ourselves feel better).

These adolescents at risk also have low HRV and the effects of alcohol have a pronounced effect on HRV.

This sets the chain of addiction in action from the start for many addicts.

So when we decide we want something this leads to a feeling of pathological wanting and then needing simply because we have altered reward systems as they are linked to our “out of kilter” stress systems .

Buying something in the store, if thwarted, soon becomes a life and death like struggle. Ever had that feeling?

I remember a 75 year old recovering person with 30 odd years of recovery  sharing in a meeting how she went to a store to get something, to find that something wasn’t there, so she was instructed to drive somewhere else to get that something, and when she got there they didn’t have it, so she had an argument with them and then with her husband in the car, then off to another store which did not have the something either, then back home on the internet, found a online store that stocked the something and ordered it.

It arrived the next day because she paid a lot of money for it to arrive the very next day! When it arrived she found that she had not only completely forgot about ordering the something but did not really want the something even. So off she sloped to apologise to her husband for being so emotionally abusive and immature over the something on her way to the Post Office to post back the something that she never really wanted in the first place!!?

This is also my head still, even after a few years of recovery. It is not as bad it was, by a long shot! It does, however, get distressed, I become impulsive and  want, need, that thing now!!! On occasion.

So I think this is one area recovery people always need to be aware of. Wanting stuff.

As it can lead to pathological wanting fairly quickly – then people get in the way of those things and we get angry, frustrated, distressed, our emotions overwhelm us or we are mean to our fellow human beings all because they are getting in the way of the thing I really really want.. NEED God damn it!…

We lose our emotional sobriety.

When we have either got it, regardless of the the human or emotional cost, we often find we do not want it or never really wanted it…that much….

Not compared to the cost of getting it!?

How do we solve this problem? We let go, we calm down, talk to someone, express our feelings, try to establish a transient homeostasis, let our stress systems subside and start again, trying to managing these chaotic brain systems.

Amends time.

If you are like that you have a low HRV and a stress/emotion regulation problem and probably always will.

But if can be manged and it can vastly improve. Then one day we learn that it is in living with our hearts forefront to our decisions and not our heads that brings lasting everyday happiness.

That is why in recovery we travel from our at times over zealous heads to our hearts. The wisdom and direction and basis of our decision making lives their not in our heads. It is not to say we do not use these wondrous instruments but we incorporate the help of our hearts in activating the reasoning of the brain.

Solve the heart issue, and the rest comes.

 

Neural structures associated with HRV

Over the past several years however a number of human neuroimaging studies have appeared in which researchers have explicitly examined the brain structures associated with HRV. In the present paper we provide a meta-analysis of eight published studies in which HRV has been related to functional brain activity using either PET or fMRI

The goal of this meta-analysis was to identify areas that were consistently associated with HRV.

In the overall analyses three regions show significant activations One region in the medial PFC (MPFC) is the right pregenual cingulate (BA 24/32).

Brodmann Cytoarchitectonics 24.pngBrodmann Cytoarchitectonics 32.png

 

Another MPFC region is the right subgenual cingulate (BA 25).

Brodmann Cytoarchitectonics 25.png

The third region is the left sublenticular extended amygdala/ventral striatum (SLEA). This region extends into the basolateral amygdalar complex, and also covers the superior amygdala (central nucleus) and extends into the ventral striatum.

 

 

More generally, the pgACC/rmPFC correlation with HRV in our meta-analysis suggests thatthis region is part, and the most reliably activated part in studies to date, of a descending “visceromotor” system that controls the autonomic nervous system and possibly other responses (neuroendocrine) based on emotional context.

The meta-analysis provides supportfor the idea that HRV may index the degree to which a mPFC-guided “core integration” system is integrated with the brainstem nuclei that directly regulate the heart. Thus these results support Claude Bernard’s idea that the vagus serves as a structural and functional link between the brain and the heart. We have proposed that this neural system essentially operates as a “super-system” that integrates the activity in perceptual, motor, interoceptive, and memory systems into gestalt representations of situations and likely adaptive responses. These findings suggest that HRV may index important organism functions associated with adaptability and health.”

References

1. THAYER, J. F., AHS, F., FREDRIKSON, M., SOLLERS, J. J., & WAGER, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health.Neuroscience and biobehavioral reviews, 36(2), 747-756.