Is the Impulsive Behaviour that Precedes Addiction Hardwired into the Brain?

In various blogs we have forwarded the idea that emotional and stress dysregulation are that the heart of addiction and alcoholism and are also possible present in those at risk to these disorders.

Essentially we suggest that the behavioural endpoint of addictive behaviours, the distress based impulsivity (negative urgency) seen in alcoholics and addicts which shapes decision making may be the consequence of chronic neurotoxic activity (as the consequence of chronic alcohol and drug use)  on brain areas which have a pre-existing impairments or vulnerability such as brain regions involved in emotional regulation, processing, inhibition and stress and reward response.

Here we cite an article (1) which looks at some of these brain regions, specifically those involved in emotional regulation and impulsivity and considers whether these deficits may be “hardwired” into the brain in terms of white and grey matter impairments.


Brain areas actively developing during adolescence include the prefrontal cortex, limbic system areas, and white matter myelin ( electrically insulating material that forms a layer, the myelin sheath – the yellow insulation below), usually around only the axon of a neuron. It is essential for the proper functioning of the nervous system.)


These areas serving cognitive, behavioral, and emotional regulation may be particularly vulnerable to adverse alcohol effects.

Alternatively, deficits or developmental delays in these structures and their functions may underlie liability to accelerated alcohol use trajectories in adolescence.

The prefrontal cortex, limbic brain regions, white matter ( composed of bundles of myelinated nerve cell axons which connect various grey matter areas (the locations of nerve cell bodies) of the brain to each other (see below – grey on outside, white inside) and carry nerve impulses between neurons. Myelin acts as an insulator, increasing the speed of transmission of all nerve signals, and reward circuits undergo active development during adolescence (Chambers et al., 2003; Spear, 2000).




These structures and their functions, involving behavioral, emotional and cognitive regulation, may be particularly vulnerable to the adverse effects of alcohol exposure during adolescence.

Delays or deficits in the development of neural substrates necessary for these psychological regulation abilities to fully develop may be termed neurodevelopmental dysmaturation.

download (6)


Psychological Dysregulation

The development of accelerated alcohol involvement in adolescence is not an isolated phenomenon, but is typically presaged by persistent behavioral characteristics including attentional deficits, conduct problems, and irritability (Chassin et al., 1999; Clark et al., 1997a, 2005; Tapert et al., 2002).

Two main psychological factors have been identified: (1) Behavioral Undercontrol, comprised of conduct disorder symptoms and personality characteristics including aggression and diminished constraint, and (2) Negative Emotionality, comprised of depression, anxiety and stress reactivity variables (Martin et al., 2000).

These two factors were significantly correlated. These correlated characteristics have been hypothesized to comprise the early phenotypic manifestations of a core liability for SUDs (Tarter et al., 1999).

The proposed construct manifested by these psychopathologic features has been termed psychological dysregulation (Clark and Winters, 2002). Psychological dysregulation is a deficiency in the ability to regulate attention, emotions and behavior in response to environmental challenges. Psychological regulation is thus the ability to modulate prepotent responses in order to optimize reward opportunities. The skills involved in psychological regulation include executive cognitive functioning (ECF), behavioral inhibition and emotional management.

Deficiencies in psychological regulation may be the result of delays or persistent deficits in the acquisition of behavioral, emotional, and cognitive regulation skills.

Adolescents at risk for developing SUDs exhibit deficits in psychological regulation. Childhood psychological dysregulation, or neurobehaviour disinhibition, correlates with parental substance use disorders (SUDs) and prospectively predicts adolescent alcohol and other substance use as well as related disorders (Clark et al., 2005; Tarter et al., 2003).

The psychological dysregulation dimension integrates several psycho patholological dimensions heretofore considered distinct, including affective disorders and SUDS themselves (Krueger et al., 2002).

Neurobiological Basis of Psychological Dysregulation

The functions subsumed under the construct of psychological dysregulation are thought to be served by the prefrontal cortex (Koechlin and Summerfield, 2007). The capabilities that comprise psychological regulation improve during adolescence (Levin et al., 1991; Welsh et al., 1991). The ongoing development of the prefrontal cortex has been hypothesized to be the primary neurobiological foundation for the advancement of these abilities (Happaney et al., 2004; Spear, 2000). Developmental abnormalities in the frontal cortex have been found in children and adolescents with behavioral problems reflecting psychological dysregulation (Rubia et al., 2000; Spear, 2000).

Diffusion tensor imaging (DTI) studies  indicated that white matter organization increases from early childhood to young adulthood (Klingberg et al., 1999; Nagy et al., 2004; Schmithorst et al., 2002; Zhang et al., 2005).White matter development may underlie advancing executive functioning. The prefrontal cortex is a brain region undergoing relatively late gray matter pruning, and volumes of gray matter appear to decrease over adolescence (Gogtay et al., 2004; Lenroot and Giedd, 2006; Sowell et al., 2001, 2004). Unlike grey matter volume, white matter volume appears to increase during adolescence, particularly in the prefrontal area (Ashtari et al., 2007;Barnea-Goraly et al., 2005; Lenroot and Giedd, 2006).





White Matter Development and Alcohol Exposure

Selective white matter loss has been reported among adults with Alcohol Use Disorders (AUDs) (Carlen et al., 1978, 1986) and with fMRI (Agartz et al., 2003), and postmortem specimens (Krill et al., 1997).  Compared with controls, adolescents with AUDs have been found to have smaller prefrontal white matter volumes (DeBellis et al., 2005). Prefrontal grey and white matter volumes were compared in adolescents with AUDs. Compared with control subjects, subjects with AUDs had significantly smaller prefrontal white matter volumes.Marijuana use has also been found to be associated with smaller white matter volumes in adolescents (Medina et al., 2007b). While these volumetric findings suggest problematic frontal development among adolescents with AUD, the emergence of neuroimaging techniques developed to examine white matter organization may prove to be more specifically relevant to understanding the effects of alcohol on neurodevelopmental maturation.

Changes in gene expression may be involved in alteration of white matter structure in AUDs.  In a postmortem study, myelin-related genes were found to be down-regulated in the AUD group (Lewohl et al., 2000).

While evidence has been presented that alcohol consumption may disrupt white matter organization, the possibility remains that delayed or diminished white matter organization may presage alcohol involvement and constitute a risk factor for AUDs. Immaturity of white matter development and the related deficits in the functional integration of brain areas may in part explain individual differences in psychological regulation during adolescence. For example, disruptive behavior disorders in childhood, particularly conduct disorder, have been found to predict accelerated trajectories of alcohol use, cannabis use, and substance-related problems in adolescence (Clark et al., 1999).

Limbic System Development and Alcohol Exposure

The limbic system is central to the processing of affective stimuli, the successful formation of new memories, and the implementation of related responses. Limbic system structures, including the hippocampus and amygdala, may be susceptible to alcohol-induced dysmaturation.

Smaller hippocampal volumes have been reported in adults with AUDs compared with control adults (Sullivan et al., 1995). As hippocampal development progresses in adolescence (Gogtay et al., 2006), this brain area may be particularly susceptible to the adverse effects of alcohol involvement during this developmental period.

DeBellis et al. (2000) compared the hippocampal volumes of 12 adolescents and young adults with adolescent-onset AUD to those of 24 control subjects. Both left and right hippocampi were significantly smaller in AUD subjects compared to the volumes in controls. Specifically, left hippocampal volumes were smaller in teens with AUD than demographically similar controls, and youth with greater severity of AUD had the smallest left hippocampal volumes (Medina et al., 2007a; Nagel et al., 2005).

The amygdala may also be important for understanding the neurodevelopmental effects of alcohol exposure. The amygdala, along with ventral striatum, has been hypothesized to be involved in reward mechanisms and thereby critical for understanding alcohol use trajectories (Koob, 1999). Amygdala volumes have been found to be relatively smaller in high-risk older adolescents and adults with SUDs compared to that in control subjects (Hill et al., 2001; Makris et al., 2004). Lack of correlation with use levels has led to the suggestion that this may be a predisposing characteristics rather than a substance effect.

Interacting brain areas are involved in reward processing (McClure et al., 2004), motivation (Chambers et al., 2003), and decision-making (Verdejo-Garcia et al., 2006).  The interactions between the prefrontal cortex and subcortical areas, including the amygdala and nucleus accumbens, constitute the neurocircuitry involved in reward responding. In the affective component of reward responding, the amygdala appears to be a network node involved in reactivity to emotional stimuli (Hariri et al., 2006; Schwartz et al., 2003). An understanding of the adolescent development of neural circuits underlying reward processing and decision making is central to considering the role of these systems in the development of alcohol involvement.

Impulsivity, defined as acting without forethought, progressively decreases from childhood into adulthood. This change has been thought to occur as a result of neuromaturation in the prefrontal cortex (Casey et al., 2005).

The generation of behaviors optimizing long-term reward opportunities often involves behavioral inhibition. The activation of prefrontal cortical areas during response inhibition tasks has been found to increase from childhood through adolescence, a change corresponding to the development of abilities to suppress prepotent behaviors (Luna and Sweeney, 2004; Luna et al., 2004). The ability to select an optimally adaptive behavioral response while suppressing a predominant or prepotent response with problematic consequences defines impulse control and is fundamental to psychological regulation skills. Improved abilities in response inhibition and related prefrontal activation during adolescence are thought to involve maturation of functional connectivity subserved by ongoing myelination.

Adolescents with psychopathology predictive of SUDs, similar to adults with alcohol dependence, have difficulty with behavioral inhibition during laboratory tasks (Bjork et al., 2004a; Dougherty et al., 2003; Schweinsburg et al., 2004). Furthermore, adolescents with histories of substantial marijuana use, compared with control adolescents, showed more activation in frontal cortical areas during behavioral inhibition tasks (Tapert et al., 2007). More activitation suggests greater effort was required by the marijuana using group.



1.  Clark, D. B., Thatcher, D. L., & Tapert, S. F. (2008). Alcohol, psychological dysregulation, and adolescent brain development. Alcoholism: Clinical and Experimental Research, 32(3), 375-385.


What makes some children of alcoholics vulnerable, and some resilient?

I come from a family of four siblings, two of whom are alcoholic and two who are not. I have often wondered why this is the case? Why is it the case that certain children of alcoholic parents will grow up to become alcoholics and why some will not? What is it that makes certain children vulnerable to alcoholism and other children, from the very same family, protected. What do these children have that protects them from later alcoholism?

This is especially important to know in terms of prevention strategies to help children at risk.

Obviously environment has an impact on vulnerability but does an inherited protectiveness help prevent this sometimes dysfunctional and abusive childhood environment of alcoholic parenting from having the same impact as those children who have inherited a genetic vulnerability?

Throughout our blogs has been a thread suggesting alcoholics, and children of alcoholics, may have difficulties in processing and regulating emotions. Is this the vulnerability, is there a difference in affective/emotional circuitry in the brain?

We cite a very interesting article here  Affective circuitry and risk for alcoholism in late adolescence: Differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents

in setting out an argument that children of alcoholics who are at greater risk of later alcoholism may have inherited impairments in brain neural circuitry which is responsible for affective/emotional processing.

Children of alcoholics (COAs) are at elevated risk for alcohol use disorders (AUD), yet not all COAs will develop AUD. One aim of this study was to identify neural activation mechanisms that may mark protection or vulnerability to AUD in COAs.


Thoughtful little girl


Some differences between alcohol abusers and control samples may precede alcoholism onset and thus constitute markers of precursive risk. After all, behavioral and affective markers early in life can predict later alcoholism (Caspi et al., 1996; Mayzer et al., 2001). Thus, it is reasonable to hypothesize that pre-alcoholic differences in the functioning of relevant neural systems will be related to risk for alcoholism.

In hoping to identify neural activation mechanisms that may mark protection or vulnerability to AUD in children of alcoholic fathers, the guiding conceptual framework was that the functioning of affective and behavioral regulation networks in the brain may serve as such mechanisms.

Consistent with that framework, the resilient and vulnerable groups were distinguished from one another by remarkably consistent inverse or opposite patterns of activation in the brain in response to the processing of emotional stimuli and which were most apparent with regard to negative affective stimuli and the vulnerable group.

These results suggest separate pathways of risk and resilience in the COA’s. First, the COA group that was not prone to early problem drinking (the resilient group) had more activation of the orbital frontal gyrus (OFG) than controls in response particularly to negative affect stimuli, but also to some extent in response to positive affect stimuli. The OFG is involved in the monitoring and evaluation of the affective value of stimuli, allowing for appropriate behavioral responses (Kringelbach and Rolls, 2004; Rolls, 2004).

The resilient group also had increased left insula activation to negative words. The insula is involved in evaluating internally generated emotions and the monitoring of ongoing internal emotional state (Phan et al., 2002).

The present findings, then, are consistent with the hypothesis that resilient youth have enhanced monitoring of emotionally arousing stimuli, even compared to typically developing youth. Yet, in an important nuance, they did not suppress the emotional experience.

They were prepared to modify behavioral response while maintaining affective response to these stimuli. This pattern of response in resilient youth may represent increased flexibility in emotional and social behavior.  These youth may be exhibiting precisely an ability to delay external response to arousing stimuli, while internally processing those stimuli. In short, this may be a “reflective” pattern of approach to the world.

It is not difficult to speculate how this pattern might protect these at risk youth from substance misuse: they are able to respond to the emotional stimuli, but demonstrate enhanced monitoring that may allow for the inhibition of inappropriate responding, buying time for flexible response options based on well-processed information.

Interestingly, the vulnerable group displayed no differences from the control group in emotional monitoring and behavioral regulation systems (OFG and insula), suggesting that weakness in that system is not a risk factor. Rather, they demonstrated over-activation of DMPFC and an atypical under-activation of key emotion processing regions (particularly extended amygdala and ventral striatum). This pattern was more notable in regard to negative affect, it was also observed to a lesser extent with positive affect.

All of this may be consistent with a reactive approach to the world, in which affect is not fully processed.

Supporting this interpretation, neuroimaging studies have consistently shown the involvement of the DMPFC with conscious self-monitoring of emotional responses (Beauregard et al., 2001; Kuchinke et al., 2006; Levesque et al., 2003; Levesque et al., 2004; Phan et al., 2005). For example, during the voluntary suppression of negative affect in healthy adults, activation in the dorsal medial and lateral prefrontal cortex increased and that in the nucleus accumbens and extended amygdala decreased (Phan et al., 2005). It has been suggested that emotional information is conveyed from limbic regions to the prefrontal cortex allowing conscious, voluntary emotional self-regulation (Levesque et al., 2003; Levesque et al., 2004).

Therefore, one interpretation of the present findings is that the vulnerable youth were recruiting an emotional control system that was suppressing emotional response.



Heitzeg, M. M., Nigg, J. T., Yau, W. Y. W., Zubieta, J. K., & Zucker, R. A. (2008). Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcoholism: Clinical and Experimental Research, 32(3), 414-426.


Understanding Emotional Processing Deficits in Addiction – Guest Blog

Understanding Emotional Processing Deficits in Addiction

by alcoholicsguide

We recently blogged on how alcoholics, and children of alcoholics, have difficulty with recognizing and differentiating external signs of emotions such as facial emotional expressions, now we will consider increasing evidence that alcoholics have difficulties with identifying and differentiating internal emotional states also.

Both these areas of research point to real difficulties in alcoholics in relation to the processing of emotion.

As we shall explain below, this deficit in emotional processing has real consequence for decision making capabilities and this has an important role to play in the initiation and maintenance of substance abuse and eventual addiction.

Alexythymia and Addiction

Effective emotion regulation skills include the ability to be aware of emotions, identify and label emotions, correctly interpret emotion-related bodily sensations, and accept and tolerate negative emotions (2,3).

Alexithymia is characterized by difficulties identifying, differentiating and expressing feelings. The prevalence rate of alexithymia in alcohol use disorders is between 45 to 67% (4,5)

Finn, Martin and Pihl (1987) investigated the presence of alexithymia among males at varying levels of genetic risk for alcoholism. They found that the high risk for alcoholism group was more likely to be alexithymic than the moderate and low genetic risk groups (6).

Higher scores on alexithymia were associated poorer emotion regulation skills, fewer percent days abstinent, greater alcohol dependence severity (7). Some studies have emphasized a right hemisphere deficit in alexithymia [8,9] based on the hypothesis that right hemisphere plays a more important role in emotion processing than the left [10, 11].

Dysfunction of the anterior cingulate cortex has been frequently argued, e.g., [12], and others have focused on neural substrates, such as the amygdala, insula, and orbitofrontal cortex (see the review in [13]). All different components of the the emotional regulation  network.

These models may interact with each other and also map onto the brain region morphological vulnerability mentioned as being prevalent in alcoholics.

Magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning (14) .

One might speculate that thinning of the corpus collosum may render alcoholics less able to inhibit negative affect in right hemisphere circuits.

Alcoholics are thus vulnerable to thinning of the corpus collosum and perhaps even to emotional processing difficulties (15 ). The inability to identify and describe affective and physiological experiences is itself associated with the elevated negative affect (16) commonly seen in alcoholics, even in recovery (17.

Thus, this unpleasant experience might prompt individuals to engage in maladaptive behaviors, such as excessive alcohol consumption, in an effort to regulate emotions, or, more specifically, cope with negative emotional states (18 )

One neuroimaging study (19) looked at and compared  various models of alexithymia showing people with alexithymia showed reduced activation in the dorsal ACC and right anterior insula (AI), and suggested individuals who exhibit impaired recognition of their own emotional states may be due to a dysfunction of the ACC-AI network, given these regions’ important role in self-awareness. These studies suggest alexithymics may not be able to use feelings to guide their behaviour appropriately.

The Iowa gambling task (IGT) was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice (20).

ep neg

The neural machinery in alexithymia is therefore activated more on the physiologic, motor-expressive level, similar to the study on children of alcoholics and thus may represent a vulnerability.

The function of the caudate is to regulate or control impulsivity and disinhibition. Individuals with alexithymia may work on the IGT impulsively rather than by using emotion-based signals. This IGT study suggests that individuals with alexithymia may be unable to use feelings to guide their behavior appropriately.

Alexithymic individuals thus may be unable to use emotion for flexible cognitive regulation. Thus, there may be dysfunction in the interaction of the aspects of the emotional response system in alexithymia with greater activation in the caudate (basal ganglia) and less activation in the mPFC in alexithymics during the IGT.

Thus alexithymics show weak responses in structures necessary for the representation of emotion used in conscious cognition and stronger responses at levels focused on action. This ties in with the blog on an emotional disease? and also  so how is your decision making? which suggested that alcoholics do not use emotion to guide decision making and rely on more motor, or automatic/compulsive parts of the brain to make decisions.

Consequently, alexithymics experience inflexible cognitive regulation, owing to impairment of the emotion guiding system. These dysregulated physiological responses over many years may result in untoward health effects such as drug addiction.

To illustrate this, one study demonstrated that patients with cocaine dependence had higher alexithymia scores compared with healthy control subjects (21).

In a study of 46 inpatients with alcohol abuse or dependence, the total TAS (Toronto Alexithymia Scale) score was significantly higher among those who relapsed after discharge than among those who did not, even when depressive symptoms were taken into account(4)

Cocaine-dependent patients also failed to activate the anterior cingulate and other paralimbic regions during stress imagery, suggesting dysregulation of control under emotional distress in these patients (22).

Instead, cocaine-dependent patients demonstrated greater craving-related activation in the dorsal striatum, a region that has been implicated in reward processing and obsessive–compulsive behaviours. The greater activation associated with alexithymia in men in the right putamen during stress is broadly consistent with earlier studies implicating the striatum in emotional motor responses.

This also corresponds to  the study of  children of alcoholics show significantly more activation in the left dorsal anterior cingulate cortex and left caudate nucleus a region associated with impulsive choice, illustrating perhaps in children of alcoholics a bias in brain decision-making systems as an underlying  elevated risk for alcoholism.

We have also suggested previously a ‘compulsive’ emotional  habit bias in endpoint addiction which reflects a stiumulus response or automatic behaviour in the face of emotional distress, which then influences an automatic decision making profile. This may be the effect of chronic drug use impacting on an inherited emotional expressive-motor decision making vulnerability seen in children of alcoholics.

In simple terms, these vulnerable individuals may recruit more automatic rather than goal-directed areas of the brain when making decisions. This would result in impulsive/compulsive decisions which do not fully consider consequences, negative or otherwise, of their decisions and resultant actions. This decision making profile would then have obvious consequences in terms of a propensity to addiction.


References (to be finished)

1. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula.Trends in neurosciences32(1), 56-67.

2. Berking M, Margraf M, Ebert D, Wupperman P, Hogmann SG, Junghanns K. Deficits in emotion-regulation skills predict alcohol use during and after cognitive-behavioral therapy for alcohol dependence. Journal of Consulting and Clinical Psychology. 2011;79:307–318

3. Gratz KL, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment.2004;26:41–54

4. Loas G, Fremaux D, Otmani O, Lecercle C, Delahousse J. Is alexithymia a negative factor for maintaining abstinence? A follow-up study. Comprehensive Psychiatry. 1997;38:296–299.

5. Ziolkowski M, Gruss T, Rybakowski JK. Does alexithymia in male alcoholics constitute a negative factor for maintaining abstinence. Psychotherapy and psychosomatics. 1995;63:169–173.

6.  Finn PR, Martin J, Pihl RO. Alexithymia in males at high genetic risk for alcoholism.Psychotherapy and Psychosomatics.1987;47:18–21

7.  Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

8. Miller L. Is alexithymia a disconnection syndrome? A neuropsychological perspective. Int J Psychiatry Med. 1986;7:199–209. doi: 10.2190/DAE0-EWPX-R7D6-LFNY.

9. Sifneos PE. Alexithymia and its relationship to hemispheric specialization, affect, and creativity.Psychiatr Clin North Am. 1988;7:287–292.

10. Buchanan DC, Waterhouse GJ, West SC Jr. A proposed neurophysiological basis of alexithymia. Psychother Psychosom. 1980;7:248–255. doi: 10.1159/000287465.

11. Shipko S. Further reflections on psychosomatic theory. Alexithymia and interhemispheric specialization. Psychotherapy and psychosomatics.

12. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Neural correlates of levels of emotional awareness Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J cognitive neuroscience. 1998;7:525–535. doi: 10.1162/089892998562924.

13. Wingbermühle E, Theunissen H, Verhoeven WMA, Kessels RPC, Egger JIM. The neurocognition of alexithymia: evidence from neuropsychological and neuroimaging studies.Acta Neuropsychiatrica. 2012;7:67–80. doi: 10.1111/j.1601-5215.2011.00613.x.

14. Oscar-Berman, M., & Bowirrat, A. (2005). Genetic influences in emotional dysfunction and alcoholism-related brain damage.

15. Sperling W, Frank H, Martus P, et al. The concept of abnormal hemispheric organization in addiction research. Alcohol Alcohol.2000;35:394–9.

16.  Connelly M, Denney DR. Regulation of emotions during experimental stress in alexithymia. Journal of Psychosomatic Research. 2007;62:649–656

17. Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., Coffey, S. F., Schlauch, R. C., Bailey, S. T., … & Gulliver, S. B. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample.Addictive Behaviors37(4), 469-476.

18.  Thorberg FA, Young RM, Sullivan KA, Lyvers M, Hurst CP, Connor JP, Feeney GFX. Alexithymia in alcohol dependent patients is partially mediated by alcohol expectancy. Drug and Alcohol Dependence. 2011;116:238–241

19. Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

20.  Kano M, Fukudo S. The alexithymic brain: the neural pathways linking alexithymia to physical disorders. BioPsychoSocial medicine. 2013;7:1. doi: 10.1186/1751-0759-7-1.

21.  Li, C. S. R., & Sinha, R. (2006). Alexithymia and stress-induced brain activation in cocaine-dependent men and women. Journal of psychiatry & neuroscience,31(2).

22.  Sinha, R., Lacadie, C., Skudlarski, P., Fulbright, R. K., Rounsaville, B. J., Kosten, T. R., & Wexler, B. E. (2005). Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study.Psychopharmacology183(2), 171-180.

Do alcoholics drive through life with Faulty Brakes!

There has been a lot of debate in the last thirty – forty years about genetic inheritance – with at least half of children of alcoholic families at risk for later alcoholism. What is less known is what exactly is inherited in our genes? What marks us out for later alcoholism? Prior to drinking are there aspects of our behaviour, personality or emotional responding that marks us out compared to so-called normal healthy types.

Recently research has looked at brain systems which overlap in decision making such as cognitive control over impulsive behaviour and also emotional processing. Children from alcoholics seem to have difficulties with both these overlapping circuits in the brain – they are not only impulsive but also do not seem to process emotions in the same way their “health” peers do. Research has also begun  to show that emotional processing is indeed important to making decisions, as is the ability to inhibit impulsive responses.

It seems  young alcoholics in the making, are not using our emotions  to make decisions and  are also prone to being impulsive. This difficulty with making decisions must shape all other future decisions ?

Youth for families with a history of alcoholism (FH+) are more likely to engage in early adolescent alcohol use (1), they may be more prone to experience the neurotoxic effects of alcohol use during adolescence.


Heavy alcohol use during adolescence is related to poorer neuropsychological functioning, including response inhibition (2), working memory (3-5), and decision-making (6).

Neuroimaging studies have shown that alcohol abusing teens have atypical grey matter volume in the PFC (7,8), and subcortical structures, such as the hippocampus (9,10) OFC and the amgydala.

Further, they have reduced integrity of white matter pathways, in both long-range connections between frontal and parietal brain regions as well as in pathways connecting subcortical and higher-order brain areas (11,12).

FMRI studies have found reduced BOLD response in adolescent alcohol abusers
in brain regions important affective decision-making (13).

The raging debate in research has been to whether these deficits are a consequence of heavy alcohol use or if genetic and environmental factors, such as family history of alcoholism, may contribute.

Risk Factor for Alcohol Use Disorders (AUDs): Family History of Alcoholism

The observation that alcoholism runs in families has long been documented
(14-16). Over the past few decades, adoption (17,18) and twin (19)
studies have suggested that there is an increased likelihood of individuals with a family history of alcoholism to develop the disorder themselves (20, 21).

These studies indicate that familial alcoholism is one of the most robust predictors of the development of an AUD during one’s lifetime. Furthermore, this risk factor appears to be stable over time, since it also predicts the chronicity of alcohol dependence at multiple time points (22).
This indicates that higher familial density is often associated with greater
risk (23), with genetic vulnerability accounting for about 30-50% of
individual risk (24-26).


One of the best characterized findings in individuals with familial alcoholism are greater impulsivity and difficulties in response inhibition which are commonly seen in this population (27,28), and FH+ individuals are less able to delay reward gratification compared with their peers (29).

Emotional processing and its relationship with executive control has received much less
attention in FH+ individuals.

Alcohol Use Disorders and Emotional Processing

Emotion Recognition and Affective Processing – Research suggests that alcohol use disorder (AUDs)  are associated with deficits in emotion recognition
(30-33), which may be related to atypical brain structure and functioning observed in the
limbic system among alcoholics (34-37).

Alcoholics not only tend to overestimate the intensity of emotions seen in faces  but they also make more negative emotional attributions and often confuse one emotion for another, such as mislabeling disgust as anger or contempt (32). Additionally, these deficits seem to be specific to alcoholism, since alcoholics, both recently abstinent and long-term abstinent, perform poorer on emotion recognition tasks than individuals with other drug abuse history (38). Alcoholics have also been shown to have slower reaction time when recognizing emotions (39).
Furthermore, poorer accuracy on emotion recognition tasks in alcoholics does not improve across the duration of the task, even though better performance is seen over time with other drug abusers (38).

Polysubstance abusing adults, the majority of whom were alcohol abusers, showed emotion recognition deficits on angry, disgusted, fearful, and sad faces (40). Based on the evidence of emotion recognition deficits in alcoholics, it is necessary to determine whether similar difficulties are present in FH+ youth that could be disruptive to emotional functioning and may contribute to the ultimately higher prevalence of alcohol abuse in this population.

Ultimately we may be observing here external emotional processing difficulties in the same manner we observed “internal” emotional processing difficulties in those with alexithymia, the reduced ability to “read” internal emotions of which a majority of alcoholics appear to suffer.

In summary, alcoholics and children of alcoholic families appear to have both external, i.e. recognition of other people’s emotions as well as their own and these may relate to immature development of brain regions which govern emotional, processing, recognition and regulation, which appears to contribute greatly to the initiation and progression of alcohol abuse.


In addition to emotional processing deficits, alcoholics have various structural
and functional abnormalities in affective processing brain regions. Studies of the limbic system have found reduced volume in subcortical structures, including the amygdala, thalamus, ventral striatum, and hippocampus among adult alcoholics (41,42). Alcoholics with smaller amygdalar volumes, are more likely to continue drinking after six months of abstinence (37).

Marinkovic et al. (2009) alcoholics exhibited both amygdalar and hippocampal hypoactivity during face encoding, and when recognizing deeply encoded faces, alcoholics had significantly reduced amygdalar activity to positive and negative emotional expressions compared with controls (35). These results help explain findings in behavioral studies of alcoholics that have found considerable evidence for emotion recognition deficits in this population.

Furthermore, during emotion identification, alcoholics showed comparable
performance to controls, but had reduced brain response in the affective division of the
anterior cingulate cortex (ACC) to disgust and sadness, with this lack of affective response to aversive stimuli believed to underlie disinhibitory traits in AUDs (36).

There is also evidence to suggest that non-alcohol abusing FHP individuals
share similar deficits in affective systems to alcohol abusers, including reduced
amygdalar volume, less amygdalar activity in response to emotional stimuli, and high
rates of internalizing symptoms such as anxiety and depression (37; 45-47).

Furthermore, research examining the relationship between emotional
processing and cognition has found that poor inhibition in individuals with co-morbid
substance and alcohol abuse is associated with atypical arousal in response to affective images (48), and affective measures in FH+ alcoholics also relate to deficits in executive functioning, e.g impulsivity (47).

This suggests that familial history of AUDs may put individuals at greater risk for problems with emotional processing and associated disruptions in executive functioning (47), which could, in turn, increase risk for alcohol abuse (49).

As we suggested previously, in relation to decision making profiles, in those at risk, those with alexithymia and also with cocaine addicts, decision making often involves more emotion expressive-motor areas of the brain like the caudate nucleus which is more of a “feel it-do it” type of reaction to decision making or a emotionally impaired or distress-based impulsivity. If there is a difficulty  processing emotions, these emotions can not be used as a signal to guide adaptive, optimal decisions. Decisions appear more compulsive and short term.

It may be this tendency to act now, rather than later,  that defines the vulnerability in FH+ children. It is like driving through life with faulty brakes on decision making, which sets up a chain of maladaptive choices such as alcohol abuse which then damages these affective based decision making regions of the brain even more, with increasing  deleterious consequences as the addiction cycle progresses until the endpoint of addiction of very limited choice of behaviour as emotional distress acts eventually as a stimulus response to alcohol use.  Emotional processing usurped by compulsive responding.



Main reference – Cservenka, A., Fair, D. A., & Nagel, B. J. (2014). Emotional Processing and Brain Activity in Youth at High Risk for Alcoholism. Alcoholism: Clinical and Experimental Research.

1.  Dawson, D.A., 2000. The link between family history and early onset alcoholism: earlier initiation of drinking or more rapid development of dependence? J Stud Alcohol 61, 637-646.

2. Ferrett, H.L., Cuzen, N.L., Thomas, K.G., Carey, P.D., Stein, D.J., Finn, P.R., Tapert, S.F., Fein, G., 2011. Characterization of South African adolescents with alcohol use disorders but without psychiatric or polysubstance comorbidity. Alcohol Clin Exp Res 35, 1705-1715.

3. Brown, S.A., Tapert, S.F., 2004. Adolescence and the trajectory of alcohol use: basic to clinical studies. Ann N Y Acad Sci 1021, 234-244.

4.   Brown, S.A., Tapert, S.F., Granholm, E., Delis, D.C., 2000. Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcohol Clin Exp Res 24, 164-171.

5.   Squeglia, L.M., Schweinsburg, A.D., Pulido, C., Tapert, S.F., 2011. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 35, 1831-1841.

6. Johnson, C.A., Xiao, L., Palmer, P., Sun, P., Wang, Q., Wei, Y., Jia, Y., Grenard, J.L.,  Stacy, A.W., Bechara, A., 2008. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers. Neuropsychologia 46, 714-726.

7. De Bellis, M.D., Narasimhan, A., Thatcher, D.L., Keshavan, M.S., Soloff, P., Clark, D.B.,  2005. Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcohol Clin Exp Res 29, 1590-1600.

8.  Medina, K.L., McQueeny, T., Nagel, B.J., Hanson, K.L., Schweinsburg, A.D., Tapert, S.F., 2008. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol Clin Exp Res 32, 386-394.

9.  De Bellis, M.D., Clark, D.B., Beers, S.R., Soloff, P.H., Boring, A.M., Hall, J., Kersh, A., Keshavan, M.S., 2000. Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157, 737-744.

10.  Nagel, B.J., Schweinsburg, A.D., Phan, V., Tapert, S.F., 2005. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry Res 139, 181-190.

11.  Bava, S., Jacobus, J., Thayer, R.E., Tapert, S.F., 2013. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 37 Suppl 1, E181-189.

12.   McQueeny, T., Schweinsburg, B.C., Schweinsburg, A.D., Jacobus, J., Bava, S., Frank, L.R., Tapert, S.F., 2009. Altered white matter integrity in adolescent binge drinkers. Alcohol Clin Exp Res 33, 1278-1285.

13. Xiao, L., Bechara, A., Gong, Q., Huang, X., Li, X., Xue, G., Wong, S., Lu, Z.L., Palmer, P., Wei, Y., Jia, Y., Johnson, C.A., 2012. Abnormal Affective Decision Making Revealed in Adolescent Binge Drinkers Using a Functional Magnetic Resonance Imaging Study. Psychol Addict Behav.

14. Cotton, N.S., 1979. The familial incidence of alcoholism: a review. J Stud Alcohol 40, 89-116.

15. Goodwin, D.W., 1979. Alcoholism and heredity. A review and hypothesis. Arch Gen Psychiatry 36, 57-61.

16.  Schuckit, M.A., 1985. Genetics and the risk for alcoholism. Jama 254, 2614-2617

17. Bohman, M., 1978. Some genetic aspects of alcoholism and criminality. A population of adoptees. Arch Gen Psychiatry 35, 269-276.

18. Cloninger, C.R., Bohman, M., Sigvardsson, S., 1981. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry 38, 861-868.

19. Merikangas, K.R., Stolar, M., Stevens, D.E., Goulet, J., Preisig, M.A., Fenton, B., Zhang, H., O’Malley, S.S., Rounsaville, B.J., 1998. Familial transmission of substance use disorders. Arch Gen Psychiatry 55, 973-979

20. Finn, P.R., Kleinman, I., Pihl, R.O., 1990. The lifetime prevalence of psychopathology in men with multigenerational family histories of alcoholism. J Nerv Ment Dis 178, 500-504.

21. Goodwin, D.W., 1985. Alcoholism and genetics. The sins of the fathers. Arch Gen Psychiatry 42, 171-174.

22. Hasin, D., Paykin, A., Endicott, J., 2001. Course of DSM-IV alcohol dependence in a community sample: effects of parental history and binge drinking. Alcohol Clin Exp Res 25, 411-414.

23. Hill, S.Y., Yuan, H., 1999. Familial density of alcoholism and onset of adolescent drinking. J Stud Alcohol 60, 7-17.

24.   Heath, A.C., Bucholz, K.K., Madden, P.A., Dinwiddie, S.H., Slutske, W.S., Bierut, L.J., Statham, D.J., Dunne, M.P., Whitfield, J.B., Martin, N.G., 1997. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 27, 1381-1396.

25. Kaprio, J., Koskenvuo, M., Langinvainio, H., Romanov, K., Sarna, S., Rose, R.J., 1987. Genetic influences on use and abuse of alcohol: a study of 5638 adult Finnish twin brothers. Alcohol Clin Exp Res 11, 349-356.

26.  Knopik, V.S., Heath, A.C., Madden, P.A., Bucholz, K.K., Slutske, W.S., Nelson, E.C., Statham, D., Whitfield, J.B., Martin, N.G., 2004. Genetic effects on alcohol dependence risk: re-evaluating the importance of psychiatric and other heritable risk factors. Psychol Med 34, 1519-1530.

27. Acheson, A., Richard, D.M., Mathias, C.W., Dougherty, D.M., 2011a. Adults with a family history of alcohol related problems are more impulsive on measures of response initiation and response inhibition. Drug Alcohol Depend 117, 198-203.

28.  Saunders, B., Farag, N., Vincent, A.S., Collins, F.L., Jr., Sorocco, K.H., Lovallo, W.R., 2008. Impulsive errors on a Go-NoGo reaction time task: disinhibitory traits in relation to a family history of alcoholism. Alcohol Clin Exp Res 32, 888-894.

29.  Acheson, A., Vincent, A.S., Sorocco, K.H., Lovallo, W.R., 2011b. Greater discounting of delayed rewards in young adults with family histories of alcohol and drug use disorders: studies from the Oklahoma family health patterns project. Alcohol Clin Exp Res 35, 1607-1613.

30. Foisy, M.L., Kornreich, C., Petiau, C., Parez, A., Hanak, C., Verbanck, P., Pelc, I., Philippot, P., 2007b. Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues? Psychiatry Res 150, 33-41.

31.  Foisy, M.L., Philippot, P., Verbanck, P., Pelc, I., van der Straten, G., Kornreich, C., 2005. Emotional facial expression decoding impairment in persons dependent on multiple substances: impact of a history of alcohol dependence. J Stud Alcohol 66, 673-681.

32.  Philippot, P., Kornreich, C., Blairy, S., Baert, I., Den Dulk, A., Le Bon, O., Streel, E., Hess, U., Pelc, I., Verbanck, P., 1999. Alcoholics’ deficits in the decoding of emotional facial expression. Alcohol Clin Exp Res 23, 1031-1038.

33.  Townshend, J.M., Duka, T., 2003. Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41, 773-782.

34.  Gilman, J.M., Hommer, D.W., 2008. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict Biol 13, 423-434.

35. Marinkovic, K., Oscar-Berman, M., Urban, T., O’Reilly, C.E., Howard, J.A., Sawyer, K., Harris, G.J., 2009. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol Clin Exp Res 33, 1880-1892.

36.  Salloum, J.B., Ramchandani, V.A., Bodurka, J., Rawlings, R., Momenan, R., George, D., Hommer, D.W., 2007. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol Clin Exp Res 31, 1490-1504.

37.  Wrase, J., Makris, N., Braus, D.F., Mann, K., Smolka, M.N., Kennedy, D.N., Caviness, V.S., Hodge, S.M., Tang, L., Albaugh, M., Ziegler, D.A., Davis, O.C., Kissling, C., Schumann, G., Breiter, H.C., Heinz, A., 2008. Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165, 1179-1184.

38.  Kornreich, C., Foisy, M.L., Philippot, P., Dan, B., Tecco, J., Noel, X., Hess, U., Pelc, I., Verbanck, P., 2003. Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Res 119, 251-260.

39.  Maurage, P., Campanella, S., Philippot, P., Martin, S., de Timary, P., 2008. Face processing in chronic alcoholism: a specific deficit for emotional features. Alcohol Clin Exp Res 32, 600-606.

40.  Fernandez-Serrano, M.J., Perez-Garcia, M., Schmidt Rio-Valle, J., Verdejo-Garcia, A., 2010. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol 24, 1317-1332.

41.  Durazzo, T.C., Tosun, D., Buckley, S., Gazdzinski, S., Mon, A., Fryer, S.L., Meyerhoff, D.J., 2011. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence. Alcohol Clin Exp Res 35, 1187-1200.

42.   Makris, N., Oscar-Berman, M., Jaffin, S.K., Hodge, S.M., Kennedy, D.N., Caviness, V.S., Marinkovic, K., Breiter, H.C., Gasic, G.P., Harris, G.J., 2008. Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64, 192-202.

43.   Benegal, V., Antony, G., Venkatasubramanian, G., Jayakumar, P.N., 2007. Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addict Biol 12, 122-132.

44.  Glahn, D.C., Lovallo, W.R., Fox, P.T., 2007. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry 61, 1306-1309.

45.   Hill, S.Y., De Bellis, M.D., Keshavan, M.S., Lowers, L., Shen, S., Hall, J., Pitts, T., 2001. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry 49, 894-905.

46.  Oscar-Berman, M., Bowirrat, A., 2005. Genetic influences in emotional dysfunction and alcoholism-related brain damage. Neuropsychiatr Dis Treat 1, 211-229.

47.  Sinha, R., Parsons, O.A., Glenn, S.W., 1989. Drinking variables, affective measures and neuropsychological performance: familial alcoholism and gender correlates. Alcohol 6, 77-85

48.  Verdejo-Garcia, A., Bechara, A., Recknor, E.C., Perez-Garcia, M., 2006. Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12, 405-415.

49.  Fox, H.C., Hong, K.A., Sinha, R., 2008. Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addict Behav 33, 388-394


Abusive Childhoods Increase Risk of Later Alcoholism

Sitting in AA meetings over a number of years I have been struck by the amount of stories I have heard about fellow AAs having had abusive childhoods and have always wondered how much this sort of maltreatment in childhood contributes to later alcoholism.

In my research I have found that child maltreatment has been frequently identified in the life histories of adolescents and adults in treatment for substance use disorders, as well as in epidemiological studies of risk factors for substance use and abuse.

Ample evidence exists for higher rates of substance abuse and dependence among maltreated individuals (1) so much so that alcoholism and addiction for many represent a developmental cascade.

In clinical samples undergoing treatment for substance use disorders, between one third and two thirds evince child abuse and neglect histories (2-7).

In a survey in The USA, of over 100,000 youth in 6th though 12th grade, Harrison, Fulkerson, and Beebe (1997)  found that those reporting either physical or sexual abuse in childhood were from 2 to 4 times more likely to be using drugs than those not reporting abuse; the rates were even higher for youth reporting multiple forms of child maltreatment (8).

Similar findings (9,10) have been reported by Rodgers et al. (2004) and Moran, Vuchinich, and Hall (2004). Among youth with Child Protective Services documenting maltreatment, Kelly, Thornberry, and Smith (1999) reported one-third higher risk for drug use among those with an abuse history(11).




In a large epidemiological study, Fergusson, Boden, and Horwood (2008) showed physical abuse and particularly sexual abuse to be related to illicit drug use, as well as abuse and dependence (12).

It also appears that  extreme economic deprivation characterizes many maltreating families who are residing in impoverished areas with substantial neighborhood disorganization and ample availability of drugs in the community(13).

Hawkins, Catalano, and Miller’s (1992) highlighted poor and inconsistent family management practices, high family conflict, and poor bonding to family as risks for adolescent substance abuse, and these factors also are characteristic of the dysfunction in maltreating families in which abuse and neglect occur.

These features are consistent with the progression of developmental failures exhibited by maltreated children (14).

Consequently, compromised adaptation in the social and academic arena contributes to association with deviant peers, who escalate the access to and modeling of substance abuse, contributing to early onset of drug use.


For many the propensity for later alcoholism and drug addiction are determined in part by genetic inheritance but all genetic transmission also relies on environmental conditions.

It would appear that abusive childhoods and emotional deprivation provide fertile grounds.



1.  Rogosch, F. A., Oshri, A., & Cicchetti, D. (2010). From child maltreatment to adolescent cannabis abuse and dependence: A developmental cascade model.Development and psychopathology22(04), 883-897.

2.  Bayatpour M, Wells RD, Holford S. Physical and sexual abuse as predictors of substance abuse and suicide among pregnant teenagers. Journal of Adolescent Health. 1992;13:128–132.

3. Cavaiola AA, Schiff M. Behavioral sequelae of physical and/or sexual abuse in adolescents. Child Abuse & Neglect.1988;12:181–188.

4. Dembo R, Dertke M, Borders S, Washburn M, Schmeidler J. The relationship between physical abuse, sexual abuse and tobacco, alcohol, and illicit drug use among youths in a juvenile detention center. International Journal of the Addictions.1988;23:351–378

5. Edwall GE, Hoffman NG, Harrison PA. Psychological correlates of sexual abuse in adolescent girls in chemical dependency.Journal of Adolescent Chemical Dependency. 1989;1:53–68.

6. Pribor EF, Dinwiddie SH. Psychiatric correlates of incest in childhood. American Journal of Psychiatry. 1992;149:52–56.

7. Schaefer MR, Sobieragi K, Hollyfield RL. Prevalence of child physical abuse in adult male veteran alcoholics. Child Abuse & Neglect. 1988;12:141–150.

8. Harrison PA, Fulkerson JA, Beebe TJ. Multiple substance use among adolescent physical and sexual abuse victims. Child Abuse & Neglect. 1997;21:529–539.

9. Harrison PA, Fulkerson JA, Beebe TJ. Multiple substance use among adolescent physical and sexual abuse victims. Child Abuse & Neglect. 1997;21:529–539.

10. Moran PB, Vuchinich S, Hall NK. Associations between types of maltreatment and substance use during adolescence. Child Abuse & Neglect. 2004;28:565–574.

11. Kelly BT, Thornberry TP, Smith CA. In the wake of child maltreatment. Washington, DC: Office of Juvenile Justice and Delinquency Prevention; 1997. pp. 1–15.

12.  Fergusson DM, Boden JM, Horwood LJ. Exposure to childhood sexual and physical abuse and adjustment in early adulthood.Child Abuse & Neglect. 2008;32:607–619.

13.  Hawkins JD, Catalano RF, Miller JY. Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: Implications for substance abuse prevention. Psychological Bulletin.1992;112:64–105.

14. Cicchetti D, Valentino K. An ecological transactional perspective on child maltreatment: Failure of the average expectable environment and its influence upon child development. In: Cicchetti D, Cohen DJ, editors. Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation. 2nd ed. New York: Wiley; 2006. pp. 129–201

At Risk Adolescents have Emotional Dysregulation?

Following up from our previous blog on the abnormalities in the ventromedial prefrontal cortex  (vmPFC) in alcoholics,  brain regions which govern emotional regulation, we came across another study which appears to show that adolescents at increased risk for later alcohol use disorders (AUDs) may also be showing an emotion regulation difficulty.

This emotional regulation difficulty may be a biomarker for later alcoholism, which is in keeping with our previous proposals that an emotional processing and regulation difficulty or disorder underpins the aetiolgy of of alcoholism. In order words it is part of the pathomechanism – or the mechanism by which a pathological condition occurs- of later alcoholism.




The area in this study, the vmPFC,   showed relatively increased cerebral blood flow (CBF) in bilateral amygdala and vmPFC and relatively decreased CBF in bilateral insula, right dorsal anterior cingulate cortex (ACC) and occipital lobe cuneus of high-risk adolescents. This suggests that adolescents at relatively high-risk for AUD exhibit altered patterns of resting CBF in distributed corticolimbic regions supporting emotional behaviors.

The authors’ hypothesized that the relatively increased amygdala and ventromedial prefrontal CBF may contribute to increased emotional reactivity and sensitivity to environmental stressors in these individuals while diminished insula/occipital cuneus and dorsal anterior cingulate cortex (ACC) CBF may lead to poor integration of visceral and sensory changes accompanying such emotional stress responses and top-down regulation of amygdala reactivity.

Thus we see our model in a snapshot even in adolescents potentially.  The emotional processing deficits we have discussed previously implicate the insula and ACC, as there appears to be a difficulty in alcoholics in reading emotional or somatic signals/states and integrating these signals into the identifying, labelling and processing of emotions. Equally there appears to be a hyperactivty in the vmPFC and amgydala as with alcoholics which implies emotional dysregulation, a hyper reactive emotional response and a tendency perhaps to a more “fight or flight” response, distress based impulsivity and short termist decision making, wanting it NOW rather than later.


References Lin, A. L., Glahn, D. C., Hariri, A. R., & Williamson, D. E. (2008). Basal Perfusion in Adolescents at Risk for Alcohol Use Disorders. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 16, p. 60).

So how is your decision making?


In this blog we will look at something  which we believe is apparent in alcoholics,  the decision making difficulties very present  in active alcoholism and to a lesser extent in recovery.

By this we mean there is a tendency to use the short term fix over more long term considerations, a more “want it now” than delayed gratification. This may be down to internal body (somatic signals) which can give rise to an unpleasant feeling at times prior making a decision, as if we sometimes make decisions based on a distress feeling rather than forward thinking, that we choose a decision to alleviate this feeling. It has been suggested by some authors that emotions do not guide the decision making of alcoholics and addicts properly and this is the reason why they are maladpative.

Equally it may be that certain somatic states such as the so-called ‘primary inducers’ of feeling, mainly centring on  the “anxious” amgydala which helps in our responding to body states associated with chronic drug and alcohol abuse, such as alleviated, chronic stress (and it’s manifestation as emotional distress) have the potential to dominate decisions, to treat decisions in a habitual, automatic manner and not in via  a thoughtful consideration of the possible outcome of our decisions.  

Once science thought we make sensible reasonable decision based on pure reason but it has become clear in recent decades that we use emotional signals ,”gut feelings” to make decisions too.

It appears that if we don’t access these emotional signals we are destined to make the move decisions over and over again, regardless of their outcome and consequence.

The extreme example of emotions guiding decisions, would be running from a rampaging lion, this decision is make emotionally, via the quick and dirty route, the “low road” according to Le Doux. The amygdala, which directs signal traffic in the brain when danger lurks, receives quick and dirty information directly from the thalamus in a route that neuroscientist Joseph LeDoux dubs the low road.

This shortcut allows the brain to start responding to a threat within a few thousandths of a second. The amygdala also receives information via a high road from the cortex. Although the high road encodes much more detailed and specific information, the extra step takes at least twice as long— and could mean the difference between life and death. 

Emotional dysregulation and altered reward sensitivity may underpin impulsive behavior and poor decision-making.

Both of these tendencies can be seen in the “real-world” behavior of addicted individuals, but can also be studied using laboratory-based paradigms.

Addiction is associated with a loss of control over drug use which continues in spite of individuals’ awareness of serious negative consequences.

Increased reward  alone, as seen in alcoholics and resulting in attentional bias and automatic responding to cues (internal and external)  do not seem a sufficient explanation for this persistent maladaptive behavior of addiction.

Instead there must be additional deficits in decision-making and/or inhibiting these maladaptive behaviours and which critically involve  emotional factors exerting a detrimental effect on cognitive function.

The term “impulsivity” is often used to describe behavior characterized by excessive approach with an additional failure of effective inhibition (1) and has consistently been found to be associated with substance dependence (2,3).

Impulsivity is a complex multifaceted construct which has resulted in numerous additional definitions such as, “the tendency to react rapidly or in unplanned ways to internal or external stimuli without proper regard for negative consequences or inherent risks” (4), or “the tendency to engage in inappropriate or maladaptive behaviors” (2).

This we suggest could be the consequence of either the push or pull of dsyregulated emotions.

By this we mean we either do not use emotions properly to feel the right  decision as we cannot process them properly to use them as “guides” in decision making or these dsyregulated emotions become distressing and prompt more compulsive decision making, effectively to relieve the distress of these negative emotional states.

Either way it appears that not only do alcoholics, but also children of alcoholics, use a more motor-expressive style of decision making, i.e. they recruit more compulsive regions of the brain rather than prefrontal cortex areas normally used used to make planned, evaluative decisions.

It appears that emotional dsyregulation is at the heart of maladaptive decison making in alcoholics and addicts.

Distressed Based Impulsivity?

Emotional impulsivity more closely reflects the interaction between emotional and cognitive processes. Negative urgency,   the disposition to engage in rash action when experiencing extreme negative affect (mood, emotion or anxiety), or in simple terms, distress-based impulsivity, was found to be the best predictor of alcohol, drug, social, legal, medical, and employment problems (5).

Substance users frequently make decisions with a view to immediate gratification (6-10), and may be less sensitive to negative future outcome (‘myopia for the future’) (11,12). It has been hypothesized that substance users are less able to use negative feedback to guide and adjust ongoing behavior (12).

These findings highlight a specific role for emotion.

Emotional impulsivity traits appear distinct from other impulsivity traits and particularly pertinent for dependence, reliably differentiating substance users from controls, and also predicting poorer outcomes in dependent individuals.

The impact of emotional processing on cognitive performance.

A common behavioral measure of impulsivity is the delay discounting task which measures the degree of temporal discounting. Participants are faced with the choice of a small immediate reward, or a larger delayed reward; choosing the smaller immediate reward indicates a higher degree of impulsivity.

Increased discounting of larger delayed rewards has been found in heroin- (13), cocaine- (14), and alcohol (15 -17) -dependent individuals.

Enhanced discounting is also seen during opiate withdrawal, possibly reflecting the emergence of negative affect states during withdrawal (18).

Withdrawal is a period of heightened noradrenaline ( a “stress” chemical”) and this excessive stress has a bearing on decision making, and in relapse.

High levels of negative affect, anxiety/stress sensitivity a in substance dependent individuals may therefore contribute to observed deficits on decision-making tasks. Stress mechanisms are considered to be important mechanisms underlying relapse (19), suggesting these emotional traits impair real life decision-making.

Studies directly assessing the role of emotional states on decision-making in opiate addiction have shown that trait and state anxiety are negatively correlated with performance on the the Iowa Gambling Task – IGT (20). Furthermore, stress induction using the Trier Social Stress Test, was shown to produce a significant deterioration in IGT performance in long term abstinence and newly abstinent heroin users, but not in comparison subjects.

Treatment with the B adrenocepter antagonist propranolol blocked the deleterious effect of stress on IGT performance, supporting the role of the noradrenergic system in the generation of negative emotional states in substance dependence (21).

These findings indicate that conditioned emotional responses, i.e. stress based emotional response, impair decision-making.

The impact of emotion on impulsive action and decision making

Planning systems (also referred to as deliberative, cognitive, reflective or executive systems) are “goal-directed” systems that allow an agent to consider the possible consequences or outcomes of its actions to guide behavior. Habit systems mediate behaviors that are triggered in response to certain stimuli or situations but without consideration of the consequences.

“Habit” systems do not mean we are calling addiction is a habit, it simply means behaviour is automatic, ingrained, individuals respond immediately, without future consequence  to certain stimulus, such as stress or emotional distress. It is a conditioned response!

Brain areas underlying these conditioned or Pavlovian responses include the amygdala, which identifies the emotional significance or value of external stimuli, and the ventral  striatum, which mediates motivational influences on instrumental responding (22), and their connections to motor circuits (23).

Thus, it has been argued that emotions constitute a decision-making system in their own right, exerting a dominant effect on choice in situations of opportunity or threat (24).

It should be noted here, that in the addiction cycle, as it progresses towards endpoint addiction and compulsive use of substances, there is a stress based reduction  in prefrontal cognitive control over behaviour, and a responding more based on automatic emotive-motoric regions of the brain such s the dorsal striatal (DS) (and basal ganglia). Reward processing moves to the DS also from the ventral striatum (VS).

Thus stress modulates instrumental action in favour of the DS-based habit system at the expense of the PFC-based goal-directed system, also seen in hypertrophy of the DS and hypotrophy of the PFC.

This shift from cognitive to automatic is also the result of  excessive engagement of habitual processes, by partly by affecting the contribution of multiple memory systems on behaviour. We suggest that emotional stress via amgydaloid activity knocks out the hippocampal (explicit) memory in favour of the DS which is also a memory system, that of implicit memory, the procedural memory.

In lien with addiction severity, the brain appears to implode inwards towards compulsive behaviours of sub-cortical areas such as the DS modulated by the amgydala from more conscious cognitive control areas of the cortex. In fact, it is possible to say that this conscious cognitive control diminishes.

Recent evidence suggests this role of stress in shifting goal-directed control to habitual control of behavior (25). This effect appears to be mediated by the action of both cortisol and noradrenaline (26).

More importantly, perhaps for our argument is that , this shift from hippcampal to DS memory is also a function of a “emotional arousal habit bias”, as seen in post traumatic stress disorder,  via amgydaloid hyperactivity, or distress based hyperactivity,  which results in emotional distress acting as a stimulus to the automatic responding of the DS. Affect related behaviour, in essence, becomes more compulsively controlled also.

In simple terms, negative urgency, may bias an automatic responding towards amgydaloid activation of the dorsal striatum and away from cortical areas such as the ventromedial cortex  – vmPFC (27 ) which is involved in emotionally guided decision making and this may have consequence for decision making as decision making involves  responding to stimulus such as emotionally provoking stimuli.

One study (28) showed this vmpfc to be hyperactive in recently abstinent alcoholics, perhaps as the result of altered stress systems which create a state called allostasis, and when further stressed responding moved to the more compulsive regions of the brain listed above. This suggest to us, that there are inherent difficulties with emotional dysregulation, particularly in early abstinence/recovery and that these resources when taxed further by seemingly stressful decision making may be dealt with via a need to make a decision to relieve this “distress” feeling rather than achieve a long term outcome. Relieving this distress is thus the outcome most urgent.

Thus for some alcoholics there is an overtaxing of the areas implicated in emotional regulation and thus emotionally guided decision making and under extreme stress we suggest this switches to more a more compulsive decision making profile.

The habit system chooses actions based upon stored associations of their values from past experience; through training, an organism learns the best action to take in a certain situation. Upon recognition of the situation again this “best action” will automatically be initiated, without consideration of consequences of such an action. This process is very fast but inflexible, unable to adapt quickly to changes in the value of outcomes (29,30).

Thus although emotion can guide decision-making when it is integral to the task at hand, emotional responses that are excessive can be detrimental (31).

Dorsal prefrontal regions are also involved in the regulation of affective states (32). Excessive emotion is likely to require increased regulation by these areas (33,34).

Dorsal prefrontal regions are additionally important in decision-making and inhibitory control, thus high levels of emotion that require regulation may limit resources available for these functions, which may contribute to deficits in decision-making.

As we mentioned this PFC control becomes impaired in the addiction cycle with automatic responding becomes more prevalent. This is especially the result of the emotional manifestation of chronic stress which is distress. We suggest this distress can act as a switch between conscious and automatic (unconscious) responding and this has consequences for decision making.

Given the crucial role of emotions in the processes of decision-making as described above, it follows that dysregulation of emotional processing may contribute to the observed decision-making deficits observed in substance dependent individuals. Decisions are driven by distress or negative affect and appear to favour now over then/later.

Looking Inside the Brain

A consistent finding of neuroimaging studies of decision-making in substance dependence is hypoactivation of the prefrontal cortex (35-37), 

Chronic drug use is consistently associated with VPFC, DLPFC and antior cingulate or ACC  gray matter loss in cocaine and alcohol dependence (38-42) and reduced prefrontal neuronal viability in opiate dependence (43,44). VPFC and DLPFC loss have been shown to predict both impaired performance on the IGT (45) and preference for immediate gratification in delay discounting tasks (37)

These areas and others involved in emotional regulation such as the hippocampus, orbitofrontal cortex  and insula show morphological abnormalities and the  emotional regulation neural network as a whole appears to have functionality and connectivity impairments.

These all suggest emotions are not being utilized properly to guide decisions. This may even appear as unregulated and distressing with the brain experiencing this distress rather than processed emotions.

A similar decision making profile is seen in alexithymia, where there is a difficulty labelling and processing emotions and thus using them to guide decision making which appears to result in recruitment of more compulsive or motor expressive areas of the brain outlined here. There are also similar morphological, neurobiological and connectivity impairments as seen in addiction. Cocaine addicts also  have a similar decision making profile as do children of alcoholics, before they start to use substances.

Whether these separate groups all have distress prompting this decision making profile  or whether it is unpleasant feeling state based on not fully processing emotion is open to debate.

As the prefrontal regions of the planning system are impaired in substance dependence, this compromises both the ability to generate affective states relating to long term goals and the ability to exert executive inhibitory control over drug-seeking thoughts and actions .

Dorsal prefrontal regions are involved in the regulation of affective states . Therefore excessive anxiety  would require increased regulation by these areas. Studies have shown dorsal prefrontal regions to be important in regulating reducing amygdala activity . Considering these prefrontal regions are important for  decision-making and anxiety regulation would limit the resources available for effective decision-making within the planning system and would not be able to inhibit more amgydaloid, or compulsive responding.

Bechara  concluded that  an impaired ability to use affective signals to guide behavior underlie impaired decision-making in these individuals. We forward the idea that distress signals guide this decision making and behaviour via a compulsive desire to automatically act to relieve a distress state. Whether via an unprocessed emotional state or as the consequence of the addiction cycle and excessive chronic distress recruiting compulsive parts of the brain.

Either way emotional processing and regulation deficits lie at the heart of these decision making difficulties! 

Now is chosen instead of later, short term gains rather than long term higher gains, because of the negative urgency to act now, to relieve a distress, which automatically, not consciously, devalues future outcome.

The future is now in other words.

There is a distress based urgency to act this moment, not later.  It is this desire to compulsively act which may give rise to obsessive compulsive behaviours, based on the desire to relieve distress not on the relative merits of a future consequence.

It can appear as a “little emergency” not a choice, the “flight or fight” response that delay discounting could possible be measuring and that excessive noradrenaline and glucocorticoids (stress chemicals) prompt – it has to be done, needs to be done now!


References (to  be included)


Hommer D. W., Bjork J. M., Gilman J. M. (2011). Imaging brain response to reward in addictive disordersAnn. N.Y. Acad. Sci1216, 50–61 10.1111/j.1749-6632.2010.05898.x

2. de Wit H. (2009). Impulsivity as a determinant and consequence of drug use: a review of underlying processesAddict. Biol14, 22–31 10.1111/j.1369-1600.2008.00129.x [PMC free article]

3. Dalley J. W., Everitt B. J., Robbins T. W. (2011). Impulsivity, compulsivity, and top-down cognitive controlNeuron 69, 680–694 10.1016/j.neuron.2011.01.020 

4. Shin S. H., Hong H. G., Jeon S. M. (2012). Personality and alcohol use: the role of impulsivityAddict. Behav37, 102–107 10.1016/j.addbeh.2011.09.006 [PMC free article]

5.  Verdejo-Garcia A., Bechara A., Recknor E. C., Perez-Garcia M. (2007a). Negative emotion-driven impulsivity predicts substance dependence problemsDrug Alcohol Depend91, 213–219 10.1016/j.drugalcdep.2007.05.025

6. Aron A. R. (2007). The neural basis of inhibition in cognitive controlNeuroscientist 13, 214–228 

7. Bickel W. K., Miller M. L., Yi R., Kowal B. P., Lindquist D. M., Pitcock J. A. (2007). Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processesDrug Alcohol Depend90Suppl. 1, S85–S91 10.1016/j.drugalcdep.2006.09.016

8. Madden G. J., Bickel W. K., Jacobs E. A. (1999). Discounting of delayed rewards in opioid-dependent outpatients: exponential or hyperbolic discounting functions? Exp. Clin. Psychopharmacol.7, 284–293 10.1037/1064-1297.7.3.284

9. Kirby K. N., Petry N. M., Bickel W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controlsJ. Exp. Psychol. Gen128, 78–87 10.1037/0096-3445.128.1.78

10. Petry N. M. (2001). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controlsPsychopharmacology (Berl.) 154, 243–250 

11.  Bechara A., Damasio A. R., Damasio H., Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortexCognition 50, 7–15

12. Bechara A., Damasio H. (2002). Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequencesNeuropsychologia 40, 1675–1689 10.1016/S0028-3932(02)00015-5

13.  Kirby K. N., Petry N. M. (2004). Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controlsAddiction 99, 461–471 10.1111/j.1360-0443.2003.00669.x

14. Coffey S. F., Gudleski G. D., Saladin M. E., Brady K. T. (2003). Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individualsExp. Clin. Psychopharmacol11, 18–25 10.1037/1064-1297.11.1.18

15. Petry N. M. (2001). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controlsPsychopharmacology (Berl.) 154, 243–250

16. Bjork J. M., Hommer D. W., Grant S. J., Danube C. (2004a).Impulsivity in abstinent alcohol-dependent patients: relation to control subjects and type 1-/type 2-like traitsAlcohol 34, 133–150

17. Mitchell J. M., Tavares V. C., Fields H. L., D’Esposito M., Boettiger C. A. (2007). Endogenous opioid blockade and impulsive responding in alcoholics and healthy controls.Neuropsychopharmacology 32, 439–449 10.1038/sj.npp.1301226 

18. Koob G. F., Le Moal M. (2005). Plasticity of reward neurocircuitry and the ‘dark side’ of drug addictionNat. Neurosci8, 1442–1444 10.1038/nn1105-1442

19. Stewart J. (2008). Review. Psychological and neural mechanisms of relapsePhilos. Trans. R. Soc. Lond. B Biol. Sci363, 3147–3158 10.1098/rstb.2008.0084 [PMC free article]

20. Lemenager T., Richter A., Reinhard I., Gelbke J., Beckmann B., Heinrich M., et al. (2011). Impaired decision making in opiate addiction correlates with anxiety and self-directedness but not substance use parametersJ. Addict. Med5, 203–213 10.1097/ADM.0b013e31820b3e3d

21. Zhang X. L., Shi J., Zhao L. Y., Sun L. L., Wang J., Wang G. B., et al. (2011). Effects of stress on decision-making deficits in formerly heroin-dependent patients after different durations of abstinenceAm. J. Psychiatry 168, 610–616 10.1176/appi.ajp.2010.10040499 

22. Cardinal R. N., Parkinson J. A., Hall J., Everitt B. J. (2002).Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortexNeurosci. Biobehav. Rev26, 321–352 10.1016/S0149-7634(02)00007-6

23. van der Meer M., Kurth-Nelson Z., Redish A. D. (2012).Information processing in decision-making systems.Neuroscientist 18, 342–359 10.1177/1073858411435128

24. Seymour B., Dolan R. (2008). Emotion, decision making, and the amygdalaNeuron 58, 662–671 10.1016/j.neuron.2008.05.020

25. Schwabe L., Wolf O. T. (2011). Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of actionBehav. Brain Res219, 321–328 10.1016/j.bbr.2010.12.038

26. Schwabe L., Tegenthoff M., Hoffken O., Wolf O. T. (2010).Concurrent glucocorticoid and noradrenergic activity shifts instrumental behavior from goal-directed to habitual controlJ. Neurosci30, 8190–8196 10.1523/JNEUROSCI.0734-10.2010

27. Cyders, M. A., Dzemidzic, M., Eiler, W. J., Coskunpinar, A., Karyadi, K., & Kareken, D. A. (2013). Negative Urgency and Ventromedial Prefrontal Cortex Responses to Alcohol Cues: fMRI Evidence of Emotion‐Based Impulsivity.Alcoholism: Clinical and Experimental Research.

28.  Seo, D., Lacadie, C. M., Tuit, K., Hong, K. I., Constable, R. T., & Sinha, R. (2013). Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk. JAMA psychiatry70(7), 727-739.

29. Daw N. D., Niv Y., Dayan P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral controlNat. Neurosci8, 1704–1711 10.1038/nn1560

30. Redish A. D., Jensen S., Johnson A. (2008). A unified framework for addiction: vulnerabilities in the decision process.Behav. Brain Sci31, 415–437 discussion: 437–487. 10.1017/S0140525X0800472X [PMC free article]

31. Bechara A., Damasio A. R. (2005). The somatic marker hypothesis: a neural theory of economic decisionGames Econ. Behav52, 336–372

32. Phillips M. L., Drevets W. C., Rauch S. L., Lane R. (2003a).Neurobiology of emotion perception I: the neural basis of normal emotion perceptionBiol. Psychiatry 54, 504–514 10.1016/S0006-3223(03)00168-9

33. Amat J., Baratta M. V., Paul E., Bland S. T., Watkins L. R., Maier S. F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus.Nat. Neurosci8, 365–371 10.1038/nn1399

34. Robbins T. W. (2005). Controlling stress: how the brain protects itself from depressionNat. Neurosci8, 261–262 10.1038/nn0305-261 

35.  Bolla K. I., Eldreth D. A., London E. D., Kiehl K. A., Mouratidis M., Contoreggi C., et al. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making taskNeuroimage 19, 1085–1094 10.1016/S1053-8119(03)00113-7 [PMC free article]

36. Tanabe J., Thompson L., Claus E., Dalwani M., Hutchison K., Banich M. T. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-makingHum. Brain Mapp28, 1276–1286 10.1002/hbm.20344

37. Bjork J. M., Momenan R., Smith A. R., Hommer D. W. (2008b). Reduced posterior mesofrontal cortex activation by risky rewards in substance-dependent patientsDrug Alcohol Depend95, 115–128 10.1016/j.drugalcdep.2007.12.014[PMC free article]

38. Fein G., Di Sclafani V., Meyerhoff D. J. (2002b). Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent menDrug Alcohol Depend68, 87–93 10.1016/S0376-8716(02)00110-2[PMC free article]

39. Makris N., Gasic G. P., Kennedy D. N., Hodge S. M., Kaiser J. R., Lee M. J., et al. (2008). Cortical thickness abnormalities in cocaine addiction-a reflection of both drug use and a pre-existing disposition to drug abuse? Neuron 60, 174–188 10.1016/j.neuron.2008.08.011 [PMC free article]

40. Fein G., Shimotsu R., Barakos J. (2010). Age-related gray matter shrinkage in a treatment naive actively drinking alcohol-dependent sampleAlcohol. Clin. Exp. Res34, 175–182 10.1111/j.1530-0277.2009.01079.x [PMC free article]

41. Goldstein R. Z., Volkow N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implicationsNat. Rev. Neurosci12, 652–669 10.1038/nrn3119 [PMC free article]

42. Ersche K. D., Turton A. J., Pradhan S., Bullmore E. T., Robbins T. W. (2010b). Drug addiction endophenotypes: impulsive versus sensation-seeking personality traitsBiol. Psychiatry 68, 770–773 10.1016/j.biopsych.2010.06.015 [PMC free article]

43. Haselhorst R., Dursteler-MacFarland K. M., Scheffler K., Ladewig D., Muller-Spahn F., Stohler R., et al. (2002).Frontocortical N-acetylaspartate reduction associated with long-term i.v. heroin useNeurology 58, 305–307

44. Yucel et al.,2007Haselhorst R., Dursteler-MacFarland K. M., Scheffler K., Ladewig D., Muller-Spahn F., Stohler R., et al. (2002).Frontocortical N-acetylaspartate reduction associated with long-term i.v. heroin useNeurology 58, 305–307

45. Tanabe J., Tregellas J. R., Dalwani M., Thompson L., Owens E., Crowley T., et al. (2009). Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individualsBiol. Psychiatry 65, 160–164 10.1016/j.biopsych.2008.07.030[PMC free article]

46. Murphy, A., Taylor, E., & Elliott, R. (2012). The detrimental effects of emotional process dysregulation on decision-making in substance dependence. Frontiers in integrative neuroscience6.

LeDoux J. (2007). The amygdalaCurr. Biol17, R868–R874 10.1016/j.cub.2007.08.005

LeDoux J. (2012). Rethinking the emotional brainNeuron 73, 653–676 10.1016/j.neuron.2012.02.004 [PMC free article]

LeDoux J. E. (2000). Emotion circuits in the brainAnnu. Rev. Neurosci23, 155–184 10.1146/annurev.neuro.23.1.155





An Emotional Disease?

Is Addiction an Emotional Disease!?

“Addiction”, is widely viewed as a chronic, relapsing, neurobiological disorder, characterized by compulsive use of alcohol or substances, despite serious negative consequences. It involves both physiological and psychological dependence and leads to the emergence of a negative emotional state.  The Diagnostic and Statistical Manual of Mental Disorders, DSM-5, combines DSM-IV categories of substance abuse and dependence into a single disorder, on a continuum from mild to severe.  The previous definition of addiction by the American Society of Addiction Medicine (ASAM) includes the terms, craving, persistent risk, and emphasizes risk of relapse after periods of abstinence triggered by exposure to substance-related cues and emotional stressors . This conceptualisation points to the role of substance-related cues, e.g., environmental stimuli that are strongly associated with the effects of the administration of substances and acquire incentive salience through Pavlovian conditioning, as well as stress (an internal cue), as major determinants of relapse.

For example in terms of the reasons for relapse implicated in much research, alcoholics relapse due to ‘cue-reactivity’ i.e. they see ‘people, places, or things’ associated with their drinking past and they are drawn to it and simply relapse.

 In some years of recovery, we have rarely heard of a committed abstinent alcoholic addict in recovery who relapsed simply because he/she was lured siren like to some cue associated stimuli. That is not to say cue reactivity is not a valid construct, it is obviously. Recovering alcoholics  exhibit an automatic, that is involuntary,  attentional bias towards drug and alcohol-related “cues”. This is a torturous aspect of early recovery thus most therapeutic regimes advise those in early abstinence and recovery to avoid “people, places and things” that act as  cue-associated stimuli. In fact, some in early recovery do challenge this only to learn painfully as the result by thinking they can spend time, like before, in drinking establishments,  only to find that it is “like sitting in a hairdressors  all day and not expecting to eventually get a haircut!”

A more recent  ASAM definition includes “Addiction is a primary, chronic disease of brain reward, motivation, memory and related circuitry. Dysfunction in these circuits leads to characteristic biological, psychological, social and spiritual manifestations. Addiction is characterized by inability to consistently abstain, impairment in behavioral control, craving, diminished recognition of significant problems with one’s behaviors and interpersonal relationships, and a dysfunctional emotional response.”

We appreciate the role now afforded to “dysfunctional emotional response” in this new definition as we believe it is dysfunctional emotional response which is at the heart of alcoholism and addiction.

Our own experience of recovery, coupled with our neuroscientific research over several years, has  made us curious as why the ways addicts and alcoholics talk about their condition or the explanations they forward all generally point to what they would call an “emotional disease” or “a parasite the feeds on their emotions”, an “emotional cancer” or a “fear based disease” yet these are rarely countenanced in any theory of addiction, whether neurobiological, psychological, psycho-analytical (although there have been very interesting ideas based on attachment within this methodology).

How could addicts and alcoholics be so wrong about themselves and what ails them? Especially when they see it also in hundreds of others with the same condition? We doubt that they are wrong, in fact, we have in recent years taken the opposite approach and started to explore, in terms of research, if addiction and alcoholism, especially, have their roots in emotional dysregulation and emotional processing deficits

In even more recent times, we have been encouraged that these difficulties also shape decision making difficulties, distress based impulsivity (leading to compulsivity) lack of inhibition across various psychological domains, as well as more revealingly the cognitive and executive dysfunctions and ‘flight or flight’ reactions which seem common to this group, over reacting in other words.

There appears to be a short term decision making profile which we suggest is distress based, which implicates more emotive-motoric “automatic,compulsive”regions of the brain rather than goal-directed. A more “let’s do it NOW!”way of making decisions.  This is also seen in children of alcoholics.

Could this be an important vulnerabilty to alcoholism? In order to get this debate going we will now consider whether there are possibilities for re-defining the DSM criterion in relation to the manifest difficulties observed in these clinical groups in relation to emotional dysregulation. The “official” nosology (e.g. DSM IV) is largely limited to physical manifestations of addiction although addicted individuals display additional psychiatric symptoms that affect their well-being and social functioning but which have been relegated to the domain of psychiatric “comorbidity.” 

Although the relationship of these psychiatric symptoms with addiction is very close, substance abuse may modify pre-existing psychic structures and lead to addiction as a specific mental disorder, inclusive of symptoms pertaining to mood/anxiety, or impulse control dimensions, decision making difficulties or, as we suggest, the various characteristics of emotional dysregulation. All of which suggests the current DSM based nosology of addiction-related mental comorbidity does not consider the overlap of the biological substrates and neurophysiology of addictive processes and psychiatric symptoms associated with addiction, so fails to include specific mood, anxiety, and impulse control dimensions and decision making difficulties in the psychopathology of addictive processes.

Addiction reaches beyond the mere result of drug-elicited effects on the brain and cannot be peremptorily equated only with the use of drugs despite the adverse consequences produced. Addiction is a relapsing chronic condition in which these psychiatric manifestations play a crucial role. Thus it may be that the aetiology of addiction cannot be severed from its psychopathological underpinning, it’s roots.  In may have been initiated by these mechanisms and also the addiction cycle may be continually perpetuated by them. Particularly in view of the undeniable presence of symptoms, of their manifest contribution to the way addicted patients feel and behave, and to the role they play in maintaining the continued use of substances.

In other words, the latter symptoms frequently precede the addictive process constituting a predisposing psychological background on which substance effects and addictive processes interact, leading to a full-fledged psychiatric disorder. Within the frame of the current DSM, numerous relevant psychiatric issues in substance abuse disorders may have been overlooked.   Even in the absence of psychiatric diagnosis, specific psychological vulnerabilities may constitute a background for the development of  disorders. The neural circuitry implicated in affective reactivity and regulation is closely related to the circuitry proposed to underlie addictive behaviours.  Affect is related to dysfunctional decision-making processes and risky behaviours,  In fact, we suggest these affective processing difficulties cause inherent decision making difficulties and constitute a premorbid vulnerability.

Substance dependence is associated with significant emotional dysregulation that influences cognition via numerous mechanismsThis dysregulation comes in the form of heightened reward sensitivity to drug-related stimuli, reduced sensitivity to natural reward stimuli, and heightened sensitivity of the brain’s stress systems that respond to threats. Such disturbances have the effect of biasing attentional processing toward drugs with powerful rewarding and/or anxiolytic effects. 

Emotional dysregulation can also result in impulsive actions and influence decision-making. It appears clear in addiction and alcoholism (substance dependence)  and that emotional processing significantly impairs cognition in substance dependence. Emotionally influenced cognitive impairments have serious negative effects with both the resultant attentional bias and decision-making deficits being predictive of drug relapse. 

The influence of emotion is clearly detrimental in substance dependence, and many of the detrimental effects observed are due to the ability of drugs of abuse to mimic the effects of stimuli or events that have survival significance. Drugs of abuse effectively trick the brain’s emotional systems into thinking that they have survival significance!

They trick the alcoholic into thinking he needs to drink to survive! 

It is important to note that the neural mechanisms implicated in neurobiological accounts of the transition to endpoint addiction from initial use are also experienced emotionally in human beings, in addicted individuals. That human beings, addicted individuals have to live with these profound alterations and impairments of various regions and neural networks in the brain. And that it is in treating these human manifestation of this neurobiological disease, i.e. one’s “dysfunctional emotional responses” in every day life that is required for long term recovery. We have to manage the emotional difficulties which perpetuate this disease, this “parasite on our emotions”, otherwise these dysfunctional overwhelming emotions manage us.   

It is through this emotional dysregulation that the addiction cycle is experienced and via emotional means perpetuated! It is through living “emotionally light” and spiritually aware lives which help manage our emotions that perpetuate our long term recovery.

Emotional distress is at the heart of addiction and alcoholism, and relief from it on a continually, daily basis is at the heart of recovery.    


American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth ed.). Arlington, VA: American Psychiatric Publishing. pp. 5–25.

Pani, Pier Paolo, et al. “Delineating the psychic structure of substance abuse and addictions: Should anxiety, mood and impulse-control dysregulation be included?.” Journal of affective disorders 122.3 (2010): 185-197.

Murphy, A., Taylor, E., & Elliott, R. (2012). The detrimental effects of emotional process dysregulation on decision-making in substance dependence. Frontiers in integrative neuroscience6.

Cheetham, A., Allen, N. B., Yücel, M., & Lubman, D. I. (2010). The role of affective dysregulation. in drug addiction. Clinical Psychology Review30(6), 621-634.