Are Alcoholics Emotionally Immature?

Concerted attempts have been made to relate personality factors to alcohol dependence.

In fact, for many years, research attempted to define the so-called alcoholic personality. Attempts to do so have dwindled in recent years.

Potential alcoholics tend to be emotionally immature, expect a great deal of the world, require an inordinate amount of praise and appreciation, react to failure with marked feelings of hurt and inferiority, have a low frustration tolerance, and feel inadequate and unsure of their abilities to fulfil expected male or female roles.1

Although the obvious emotional immaturity often seen in alcoholics seems to cover a number of the more recent findings on bio-psychologcal aspects a alcoholism.

For example, if we partly defined emotional immaturity as containing some of the following, then we appear to be covering a number of much researched and demonstrated aspects of alcoholism. Do these then not come under an umbrella term of emotional immaturity? This list was complied by Psych Central

Dimensions of Emotional maturity

  1. The ability to modulate emotional responses.  Addicts tend to have an all or nothing emotional response.  When they respond they become overly emotional and take a longer time to return to baseline.  They are easily flooded with emotion to the point of impairing functioning.
  1. The ability to tolerate frustration.  Addicts tend to respond to frustrating situations as disasters rather than having any perspective.
  1. The ability to delay gratification.  Emotionally immature people have trouble planning and working toward goals.  The ability to give up immediate gratification is necessary for anyone to go about life in a successful way.
  1. The ability to control impulses.  The mature self has the ability to see that feeling the urge to do something is not the same as doing it.  The recovering addict has a level of control over his or her behavior and can put boundaries around what is inappropriate to say or do.
  1. The ability to be reliable and accountable.  Addicts are often self centered and not good at dealing with the everyday requirements of life like being on time, fulfilling obligations and telling the truth.  As they gain emotional maturity they gain the ability to get out of themselves and think about the impact of their actions on others and on their own lives as well.

 

 photo-for-emotional-maturity

 

According to a list drawn up by alcoholrehab.com

If people are emotionally immature, they may exhibit some of the following symptoms:

* Such individuals will often find it hard to deal with the normal challenges of life. When they are faced with problems they feel unable to cope. They may have developed a psychological state known as learned helplessness.

They struggle to develop meaningful relationships with other people. They may appear too needy or a bit overbearing.
* Those people who are emotionally immature will tend to have a pessimistic outlook on life. They may see the future as a threatening and hostile place.
* This type of person will usually have low self-esteem. This means that they do not value themselves highly so will be willing to accept very little in life as being all they deserve.
* They find it almost impossible to live in the present moment. They are either reliving the past or worrying about the future.
* They can easily lose their temper at the slightest provocation. When they are dealing with uncomfortable emotions they will tend to take things out on other people.

* People who are emotionally immature can have unrealistically high expectations. This means that they are frequently disappointed. Such and individual can have impossibly high expectations for other people yet low expectations for themselves.
* Such individuals can suffer from severe mood swings. This instability of mood can make life a bit uncomfortable.
* If people are emotionally immature, they find it much harder to control their own behavior.

Recognize any of these symptoms?

images (26)

We were completely like this before doing the 12 steps.

We, however, do not think that anyone, alcoholics or otherwise choose to behave in this emotional immature way.

We have already looked at the emotional distress accompanies alcoholism and addiction, and will be examining more in the months ahead and it is difficult not to see the above emotional immaturity as all being products of a distress state.

In the course of addiction the alcoholic in particular grows in emotional distress as the stress and emotional dysregulation associated with addiction increases.

This means the brain “collapses” from more cortical, goal-directed (and emotionally regulated) areas of the brain to more sub-cortical areas which are more automatic, unthinking and compulsive.

Emotional distress activates these areas of habit-like compulsive behaviour, acting as a stimulus response, distress the stimulus and compulsive (unthinking)  responding as the response.

This is like a distress based or “fight or flight” reality or a heightened emotional state or “emergency” state. It seems to us that alcoholics live in this region more than cortical regions. They are primed to go off!

They then have a tendency to either run away from situations or to fight “everybody and everything”, to be intolerant of uncertainty, to catastrophize, to be fear-based people to be over reactive, hypervigilant, perfectionist etc These are all distress based states.

Are aspects of the  apparent emotional immaturity mentioned above not also not  a surface manifestation of these deep subcortical processes?

It is this state of heightened uncertainty and fear that whittles away at the alcoholic psyche. This amount of stress/distress promotes implicit, do, memory, over explicit, reflective, evaluative, memory. Distress makes one act without much thought of consequence, it makes one choose short term over greater long term gain, it makes one want to act impulsively or compulsively to alleviate distress. It is this distress that is in charge of action and emotional behaviour. It calls the shots.  A state of emergency has been called in the brain of the alcoholic.

I know it is widely shared at AA meetings that we got stuck in the emotional age of our first drink, in the early teens and never developed our emotional selves or capacity to regulate and process emotions. We are not sure this is completely true as the stress that accompanies alcoholism, as alcohol is literally classified as a pharmacological stressor,  not only causes chronic stress dysregulation but also the emotional dysregulation which accompanies this. It is emotional parts of the brain and the cortical areas that are supposed to keep them in check that are most impaired via chronic alcoholism.

Dr. Stephanie Brown (2) has explored these developmental changes in cognition, which lead to “alcoholic thinking.” She states that these changes refer “not only to rationalization, denial and frame of mind, but also to character traits that frequently accompany drinking. These include grandiosity, omnipotence and low frustration tolerance.” (3) These traits appear to be directly associated with the addictive process rather than with the individual’s personality prior to establishing this abusive cycle.

As alcohol becomes more dominant, the need to deny these changes becomes greater. It appears that there is an interaction between physiological changes and psychological defenses which creates emotional immaturity, self-centeredness and irresponsibility. Alcoholism becomes a thought disorder as well as an addiction to alcohol.

This is the consequence we believe of prefrontal atrophy and subcortical hypertrophy caused by chronic alcohol consumption, a constant injection a pharmacological stressor into the brain, wrecking the ability to maturely deliberate and instead rely on “I want it now!”  type of thinking.

We firmly believe this progression is to a state of constant distress signal in the brain and a cortical hyperarousal.

The alcoholic may not be emotionally distressed all the time but his brain is never satisfied, it constantly needs more, it finds only transient balance, via allostasis, it never finds true balance, i.e. homeostasis. it is always seeking, never reaching satiety, never completely at rest. This is emotionally exhausting.

It may represent, on superficial observation to some, the “emotional immaturity, self-centeredness and irresponsibility” (4) but is it really this simple, seeing these as the primary defenses and interpersonal style typical of normal development in the first three years of life or to characterize the addictive part of self as a “two-year-old child”?

Isn’t it more apt to say instead of  a “two-year-old wounded part of self begins to “drive the bus” and create havoc for all concerned” to say chronic stress manifest  as emotional distress “driving the bus”?

Thus a valid question remains for us and we ask it to our normies or earthling friends (i.e. non-alcoholics), wouldn’t you act in a childish if you were this distressed most of the time, having to rely on impaired emotional regulation and processing parts of the brain?

 

484

In fact, to all those normies or earthlings who are reading this blog, how well do you think or consider others when in a state of persistent and daily distress? In this heightened anxiety how good is your action outcome memory, goal-directed planning and awareness of future consequence?

Are you ever moody, emotionally volatile and over reactive in this state of high anxiety? Hyper sensitive? Ever strike out unthinkingly at others although you had not intended to? Leading to guilt and shame, and remorse and self pity which can in the fullest of time lead to depression? This is called a transient emotional dysregulation, distress leading to an emotional cascade. This is the brain of an alcoholic all the time. It can lead to dejection and relapse.

In this sate of nauseating anxiety, how well do you consider the consequence, negative or otherwise, or your fear-based decision making?  Do you choose the short term answer in these anxiety-filled moments just to simply relieve this distress this unpleasant feeling of doom? So do alcoholics!

It is not enough to call the alcoholic emotional immature or stuck in the “terrible twos”, although let’s face it the evidence for it is compelling at times!! Let’s instead understand the reasons for it. Would you like to be in a state of distress most of the time? It’s not a whole lot of fun!

The 12 steps help solve these issues, there is a solution to emotional immaturity – it leads to emotional maturity or emotional sobriety which is blogged about here also.

The next time the alcoholic is your life acts in an immature way don’t ask them why they are acting that way, ask them how they feel. instead. Get them to identify, label and process their feelings  by verbalizing them.

When the anxious amgydala has quelled and  it’s feverish responding quietened,  get them to an AA meeting where many tens of thousands of alcoholics are doing the same, “sharing”, processing their emotions by talking about them and how they really feel.

 

wont-admit-cartoon-crop-gif

Not running away from them or intellectualizing about them, not fighting them. Simply saying in words how they feel.

It is a miracle awakening for us in recovery, the emotional regulation normies and earthlings take for granted.

The age of miracles is amongst us and it starts by opening your mouth, asking for help, getting help and getting real about what you are really feeling.

It is through sharing our deepest feelings that we start to mature and grow up.

 

maturity-grown-up-300x225

 

References

1. Chaudhury, S.K. Das, B. Ukil,  Psychological assessment of alcoholism in males Indian J Psychiatry. 2006 Apr-Jun; 48(2): 114–117. doi: 10.4103/0019-5545.31602

2. Brown S. (1985). Treating the Alcoholic: A Developmental Model of Recovery. New York: John Wiley & Sons, Spring.

3. Brown, S. (1988). Treating Adult Children of Alcoholics: A Developmental Perspective. New York: John Wiley and Sons.

4. http://www.cairforyou.com/alchoholdrugs/alcoholcharacter.htm

 

Understanding Emotional Processing Deficits in Addiction – Guest Blog

Understanding Emotional Processing Deficits in Addiction

by alcoholicsguide

We recently blogged on how alcoholics, and children of alcoholics, have difficulty with recognizing and differentiating external signs of emotions such as facial emotional expressions, now we will consider increasing evidence that alcoholics have difficulties with identifying and differentiating internal emotional states also.

Both these areas of research point to real difficulties in alcoholics in relation to the processing of emotion.

As we shall explain below, this deficit in emotional processing has real consequence for decision making capabilities and this has an important role to play in the initiation and maintenance of substance abuse and eventual addiction.

Alexythymia and Addiction

Effective emotion regulation skills include the ability to be aware of emotions, identify and label emotions, correctly interpret emotion-related bodily sensations, and accept and tolerate negative emotions (2,3).

Alexithymia is characterized by difficulties identifying, differentiating and expressing feelings. The prevalence rate of alexithymia in alcohol use disorders is between 45 to 67% (4,5)

Finn, Martin and Pihl (1987) investigated the presence of alexithymia among males at varying levels of genetic risk for alcoholism. They found that the high risk for alcoholism group was more likely to be alexithymic than the moderate and low genetic risk groups (6).

Higher scores on alexithymia were associated poorer emotion regulation skills, fewer percent days abstinent, greater alcohol dependence severity (7). Some studies have emphasized a right hemisphere deficit in alexithymia [8,9] based on the hypothesis that right hemisphere plays a more important role in emotion processing than the left [10, 11].

Dysfunction of the anterior cingulate cortex has been frequently argued, e.g., [12], and others have focused on neural substrates, such as the amygdala, insula, and orbitofrontal cortex (see the review in [13]). All different components of the the emotional regulation  network.

These models may interact with each other and also map onto the brain region morphological vulnerability mentioned as being prevalent in alcoholics.

Magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning (14) .

One might speculate that thinning of the corpus collosum may render alcoholics less able to inhibit negative affect in right hemisphere circuits.

Alcoholics are thus vulnerable to thinning of the corpus collosum and perhaps even to emotional processing difficulties (15 ). The inability to identify and describe affective and physiological experiences is itself associated with the elevated negative affect (16) commonly seen in alcoholics, even in recovery (17.

Thus, this unpleasant experience might prompt individuals to engage in maladaptive behaviors, such as excessive alcohol consumption, in an effort to regulate emotions, or, more specifically, cope with negative emotional states (18 )

One neuroimaging study (19) looked at and compared  various models of alexithymia showing people with alexithymia showed reduced activation in the dorsal ACC and right anterior insula (AI), and suggested individuals who exhibit impaired recognition of their own emotional states may be due to a dysfunction of the ACC-AI network, given these regions’ important role in self-awareness. These studies suggest alexithymics may not be able to use feelings to guide their behaviour appropriately.

The Iowa gambling task (IGT) was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice (20).

ep neg

The neural machinery in alexithymia is therefore activated more on the physiologic, motor-expressive level, similar to the study on children of alcoholics and thus may represent a vulnerability.

The function of the caudate is to regulate or control impulsivity and disinhibition. Individuals with alexithymia may work on the IGT impulsively rather than by using emotion-based signals. This IGT study suggests that individuals with alexithymia may be unable to use feelings to guide their behavior appropriately.

Alexithymic individuals thus may be unable to use emotion for flexible cognitive regulation. Thus, there may be dysfunction in the interaction of the aspects of the emotional response system in alexithymia with greater activation in the caudate (basal ganglia) and less activation in the mPFC in alexithymics during the IGT.

Thus alexithymics show weak responses in structures necessary for the representation of emotion used in conscious cognition and stronger responses at levels focused on action. This ties in with the blog on an emotional disease? and also  so how is your decision making? which suggested that alcoholics do not use emotion to guide decision making and rely on more motor, or automatic/compulsive parts of the brain to make decisions.

Consequently, alexithymics experience inflexible cognitive regulation, owing to impairment of the emotion guiding system. These dysregulated physiological responses over many years may result in untoward health effects such as drug addiction.

To illustrate this, one study demonstrated that patients with cocaine dependence had higher alexithymia scores compared with healthy control subjects (21).

In a study of 46 inpatients with alcohol abuse or dependence, the total TAS (Toronto Alexithymia Scale) score was significantly higher among those who relapsed after discharge than among those who did not, even when depressive symptoms were taken into account(4)

Cocaine-dependent patients also failed to activate the anterior cingulate and other paralimbic regions during stress imagery, suggesting dysregulation of control under emotional distress in these patients (22).

Instead, cocaine-dependent patients demonstrated greater craving-related activation in the dorsal striatum, a region that has been implicated in reward processing and obsessive–compulsive behaviours. The greater activation associated with alexithymia in men in the right putamen during stress is broadly consistent with earlier studies implicating the striatum in emotional motor responses.

This also corresponds to  the study of  children of alcoholics show significantly more activation in the left dorsal anterior cingulate cortex and left caudate nucleus a region associated with impulsive choice, illustrating perhaps in children of alcoholics a bias in brain decision-making systems as an underlying  elevated risk for alcoholism.

We have also suggested previously a ‘compulsive’ emotional  habit bias in endpoint addiction which reflects a stiumulus response or automatic behaviour in the face of emotional distress, which then influences an automatic decision making profile. This may be the effect of chronic drug use impacting on an inherited emotional expressive-motor decision making vulnerability seen in children of alcoholics.

In simple terms, these vulnerable individuals may recruit more automatic rather than goal-directed areas of the brain when making decisions. This would result in impulsive/compulsive decisions which do not fully consider consequences, negative or otherwise, of their decisions and resultant actions. This decision making profile would then have obvious consequences in terms of a propensity to addiction.

 

References (to be finished)

1. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula.Trends in neurosciences32(1), 56-67.

2. Berking M, Margraf M, Ebert D, Wupperman P, Hogmann SG, Junghanns K. Deficits in emotion-regulation skills predict alcohol use during and after cognitive-behavioral therapy for alcohol dependence. Journal of Consulting and Clinical Psychology. 2011;79:307–318

3. Gratz KL, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment.2004;26:41–54

4. Loas G, Fremaux D, Otmani O, Lecercle C, Delahousse J. Is alexithymia a negative factor for maintaining abstinence? A follow-up study. Comprehensive Psychiatry. 1997;38:296–299.

5. Ziolkowski M, Gruss T, Rybakowski JK. Does alexithymia in male alcoholics constitute a negative factor for maintaining abstinence. Psychotherapy and psychosomatics. 1995;63:169–173.

6.  Finn PR, Martin J, Pihl RO. Alexithymia in males at high genetic risk for alcoholism.Psychotherapy and Psychosomatics.1987;47:18–21

7.  Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

8. Miller L. Is alexithymia a disconnection syndrome? A neuropsychological perspective. Int J Psychiatry Med. 1986;7:199–209. doi: 10.2190/DAE0-EWPX-R7D6-LFNY.

9. Sifneos PE. Alexithymia and its relationship to hemispheric specialization, affect, and creativity.Psychiatr Clin North Am. 1988;7:287–292.

10. Buchanan DC, Waterhouse GJ, West SC Jr. A proposed neurophysiological basis of alexithymia. Psychother Psychosom. 1980;7:248–255. doi: 10.1159/000287465.

11. Shipko S. Further reflections on psychosomatic theory. Alexithymia and interhemispheric specialization. Psychotherapy and psychosomatics.

12. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Neural correlates of levels of emotional awareness Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J cognitive neuroscience. 1998;7:525–535. doi: 10.1162/089892998562924.

13. Wingbermühle E, Theunissen H, Verhoeven WMA, Kessels RPC, Egger JIM. The neurocognition of alexithymia: evidence from neuropsychological and neuroimaging studies.Acta Neuropsychiatrica. 2012;7:67–80. doi: 10.1111/j.1601-5215.2011.00613.x.

14. Oscar-Berman, M., & Bowirrat, A. (2005). Genetic influences in emotional dysfunction and alcoholism-related brain damage.

15. Sperling W, Frank H, Martus P, et al. The concept of abnormal hemispheric organization in addiction research. Alcohol Alcohol.2000;35:394–9.

16.  Connelly M, Denney DR. Regulation of emotions during experimental stress in alexithymia. Journal of Psychosomatic Research. 2007;62:649–656

17. Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., Coffey, S. F., Schlauch, R. C., Bailey, S. T., … & Gulliver, S. B. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample.Addictive Behaviors37(4), 469-476.

18.  Thorberg FA, Young RM, Sullivan KA, Lyvers M, Hurst CP, Connor JP, Feeney GFX. Alexithymia in alcohol dependent patients is partially mediated by alcohol expectancy. Drug and Alcohol Dependence. 2011;116:238–241

19. Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

20.  Kano M, Fukudo S. The alexithymic brain: the neural pathways linking alexithymia to physical disorders. BioPsychoSocial medicine. 2013;7:1. doi: 10.1186/1751-0759-7-1.

21.  Li, C. S. R., & Sinha, R. (2006). Alexithymia and stress-induced brain activation in cocaine-dependent men and women. Journal of psychiatry & neuroscience,31(2).

22.  Sinha, R., Lacadie, C., Skudlarski, P., Fulbright, R. K., Rounsaville, B. J., Kosten, T. R., & Wexler, B. E. (2005). Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study.Psychopharmacology183(2), 171-180.

Do alcoholics drive through life with Faulty Brakes!

There has been a lot of debate in the last thirty – forty years about genetic inheritance – with at least half of children of alcoholic families at risk for later alcoholism. What is less known is what exactly is inherited in our genes? What marks us out for later alcoholism? Prior to drinking are there aspects of our behaviour, personality or emotional responding that marks us out compared to so-called normal healthy types.

Recently research has looked at brain systems which overlap in decision making such as cognitive control over impulsive behaviour and also emotional processing. Children from alcoholics seem to have difficulties with both these overlapping circuits in the brain – they are not only impulsive but also do not seem to process emotions in the same way their “health” peers do. Research has also begun  to show that emotional processing is indeed important to making decisions, as is the ability to inhibit impulsive responses.

It seems  young alcoholics in the making, are not using our emotions  to make decisions and  are also prone to being impulsive. This difficulty with making decisions must shape all other future decisions ?

Youth for families with a history of alcoholism (FH+) are more likely to engage in early adolescent alcohol use (1), they may be more prone to experience the neurotoxic effects of alcohol use during adolescence.

_54075099_teenage_girl_drinking_

Heavy alcohol use during adolescence is related to poorer neuropsychological functioning, including response inhibition (2), working memory (3-5), and decision-making (6).

Neuroimaging studies have shown that alcohol abusing teens have atypical grey matter volume in the PFC (7,8), and subcortical structures, such as the hippocampus (9,10) OFC and the amgydala.

Further, they have reduced integrity of white matter pathways, in both long-range connections between frontal and parietal brain regions as well as in pathways connecting subcortical and higher-order brain areas (11,12).

FMRI studies have found reduced BOLD response in adolescent alcohol abusers
in brain regions important affective decision-making (13).

The raging debate in research has been to whether these deficits are a consequence of heavy alcohol use or if genetic and environmental factors, such as family history of alcoholism, may contribute.

Risk Factor for Alcohol Use Disorders (AUDs): Family History of Alcoholism

The observation that alcoholism runs in families has long been documented
(14-16). Over the past few decades, adoption (17,18) and twin (19)
studies have suggested that there is an increased likelihood of individuals with a family history of alcoholism to develop the disorder themselves (20, 21).

These studies indicate that familial alcoholism is one of the most robust predictors of the development of an AUD during one’s lifetime. Furthermore, this risk factor appears to be stable over time, since it also predicts the chronicity of alcohol dependence at multiple time points (22).
This indicates that higher familial density is often associated with greater
risk (23), with genetic vulnerability accounting for about 30-50% of
individual risk (24-26).

 

One of the best characterized findings in individuals with familial alcoholism are greater impulsivity and difficulties in response inhibition which are commonly seen in this population (27,28), and FH+ individuals are less able to delay reward gratification compared with their peers (29).

Emotional processing and its relationship with executive control has received much less
attention in FH+ individuals.

Alcohol Use Disorders and Emotional Processing

Emotion Recognition and Affective Processing – Research suggests that alcohol use disorder (AUDs)  are associated with deficits in emotion recognition
(30-33), which may be related to atypical brain structure and functioning observed in the
limbic system among alcoholics (34-37).

Alcoholics not only tend to overestimate the intensity of emotions seen in faces  but they also make more negative emotional attributions and often confuse one emotion for another, such as mislabeling disgust as anger or contempt (32). Additionally, these deficits seem to be specific to alcoholism, since alcoholics, both recently abstinent and long-term abstinent, perform poorer on emotion recognition tasks than individuals with other drug abuse history (38). Alcoholics have also been shown to have slower reaction time when recognizing emotions (39).
Furthermore, poorer accuracy on emotion recognition tasks in alcoholics does not improve across the duration of the task, even though better performance is seen over time with other drug abusers (38).

Polysubstance abusing adults, the majority of whom were alcohol abusers, showed emotion recognition deficits on angry, disgusted, fearful, and sad faces (40). Based on the evidence of emotion recognition deficits in alcoholics, it is necessary to determine whether similar difficulties are present in FH+ youth that could be disruptive to emotional functioning and may contribute to the ultimately higher prevalence of alcohol abuse in this population.

Ultimately we may be observing here external emotional processing difficulties in the same manner we observed “internal” emotional processing difficulties in those with alexithymia, the reduced ability to “read” internal emotions of which a majority of alcoholics appear to suffer.

In summary, alcoholics and children of alcoholic families appear to have both external, i.e. recognition of other people’s emotions as well as their own and these may relate to immature development of brain regions which govern emotional, processing, recognition and regulation, which appears to contribute greatly to the initiation and progression of alcohol abuse.

binge_drink404_675458c

In addition to emotional processing deficits, alcoholics have various structural
and functional abnormalities in affective processing brain regions. Studies of the limbic system have found reduced volume in subcortical structures, including the amygdala, thalamus, ventral striatum, and hippocampus among adult alcoholics (41,42). Alcoholics with smaller amygdalar volumes, are more likely to continue drinking after six months of abstinence (37).

Marinkovic et al. (2009) alcoholics exhibited both amygdalar and hippocampal hypoactivity during face encoding, and when recognizing deeply encoded faces, alcoholics had significantly reduced amygdalar activity to positive and negative emotional expressions compared with controls (35). These results help explain findings in behavioral studies of alcoholics that have found considerable evidence for emotion recognition deficits in this population.

Furthermore, during emotion identification, alcoholics showed comparable
performance to controls, but had reduced brain response in the affective division of the
anterior cingulate cortex (ACC) to disgust and sadness, with this lack of affective response to aversive stimuli believed to underlie disinhibitory traits in AUDs (36).

There is also evidence to suggest that non-alcohol abusing FHP individuals
share similar deficits in affective systems to alcohol abusers, including reduced
amygdalar volume, less amygdalar activity in response to emotional stimuli, and high
rates of internalizing symptoms such as anxiety and depression (37; 45-47).

Furthermore, research examining the relationship between emotional
processing and cognition has found that poor inhibition in individuals with co-morbid
substance and alcohol abuse is associated with atypical arousal in response to affective images (48), and affective measures in FH+ alcoholics also relate to deficits in executive functioning, e.g impulsivity (47).

This suggests that familial history of AUDs may put individuals at greater risk for problems with emotional processing and associated disruptions in executive functioning (47), which could, in turn, increase risk for alcohol abuse (49).

As we suggested previously, in relation to decision making profiles, in those at risk, those with alexithymia and also with cocaine addicts, decision making often involves more emotion expressive-motor areas of the brain like the caudate nucleus which is more of a “feel it-do it” type of reaction to decision making or a emotionally impaired or distress-based impulsivity. If there is a difficulty  processing emotions, these emotions can not be used as a signal to guide adaptive, optimal decisions. Decisions appear more compulsive and short term.

It may be this tendency to act now, rather than later,  that defines the vulnerability in FH+ children. It is like driving through life with faulty brakes on decision making, which sets up a chain of maladaptive choices such as alcohol abuse which then damages these affective based decision making regions of the brain even more, with increasing  deleterious consequences as the addiction cycle progresses until the endpoint of addiction of very limited choice of behaviour as emotional distress acts eventually as a stimulus response to alcohol use.  Emotional processing usurped by compulsive responding.

 

References

Main reference – Cservenka, A., Fair, D. A., & Nagel, B. J. (2014). Emotional Processing and Brain Activity in Youth at High Risk for Alcoholism. Alcoholism: Clinical and Experimental Research.

1.  Dawson, D.A., 2000. The link between family history and early onset alcoholism: earlier initiation of drinking or more rapid development of dependence? J Stud Alcohol 61, 637-646.

2. Ferrett, H.L., Cuzen, N.L., Thomas, K.G., Carey, P.D., Stein, D.J., Finn, P.R., Tapert, S.F., Fein, G., 2011. Characterization of South African adolescents with alcohol use disorders but without psychiatric or polysubstance comorbidity. Alcohol Clin Exp Res 35, 1705-1715.

3. Brown, S.A., Tapert, S.F., 2004. Adolescence and the trajectory of alcohol use: basic to clinical studies. Ann N Y Acad Sci 1021, 234-244.

4.   Brown, S.A., Tapert, S.F., Granholm, E., Delis, D.C., 2000. Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcohol Clin Exp Res 24, 164-171.

5.   Squeglia, L.M., Schweinsburg, A.D., Pulido, C., Tapert, S.F., 2011. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 35, 1831-1841.

6. Johnson, C.A., Xiao, L., Palmer, P., Sun, P., Wang, Q., Wei, Y., Jia, Y., Grenard, J.L.,  Stacy, A.W., Bechara, A., 2008. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers. Neuropsychologia 46, 714-726.

7. De Bellis, M.D., Narasimhan, A., Thatcher, D.L., Keshavan, M.S., Soloff, P., Clark, D.B.,  2005. Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcohol Clin Exp Res 29, 1590-1600.

8.  Medina, K.L., McQueeny, T., Nagel, B.J., Hanson, K.L., Schweinsburg, A.D., Tapert, S.F., 2008. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol Clin Exp Res 32, 386-394.

9.  De Bellis, M.D., Clark, D.B., Beers, S.R., Soloff, P.H., Boring, A.M., Hall, J., Kersh, A., Keshavan, M.S., 2000. Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157, 737-744.

10.  Nagel, B.J., Schweinsburg, A.D., Phan, V., Tapert, S.F., 2005. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry Res 139, 181-190.

11.  Bava, S., Jacobus, J., Thayer, R.E., Tapert, S.F., 2013. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 37 Suppl 1, E181-189.

12.   McQueeny, T., Schweinsburg, B.C., Schweinsburg, A.D., Jacobus, J., Bava, S., Frank, L.R., Tapert, S.F., 2009. Altered white matter integrity in adolescent binge drinkers. Alcohol Clin Exp Res 33, 1278-1285.

13. Xiao, L., Bechara, A., Gong, Q., Huang, X., Li, X., Xue, G., Wong, S., Lu, Z.L., Palmer, P., Wei, Y., Jia, Y., Johnson, C.A., 2012. Abnormal Affective Decision Making Revealed in Adolescent Binge Drinkers Using a Functional Magnetic Resonance Imaging Study. Psychol Addict Behav.

14. Cotton, N.S., 1979. The familial incidence of alcoholism: a review. J Stud Alcohol 40, 89-116.

15. Goodwin, D.W., 1979. Alcoholism and heredity. A review and hypothesis. Arch Gen Psychiatry 36, 57-61.

16.  Schuckit, M.A., 1985. Genetics and the risk for alcoholism. Jama 254, 2614-2617

17. Bohman, M., 1978. Some genetic aspects of alcoholism and criminality. A population of adoptees. Arch Gen Psychiatry 35, 269-276.

18. Cloninger, C.R., Bohman, M., Sigvardsson, S., 1981. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry 38, 861-868.

19. Merikangas, K.R., Stolar, M., Stevens, D.E., Goulet, J., Preisig, M.A., Fenton, B., Zhang, H., O’Malley, S.S., Rounsaville, B.J., 1998. Familial transmission of substance use disorders. Arch Gen Psychiatry 55, 973-979

20. Finn, P.R., Kleinman, I., Pihl, R.O., 1990. The lifetime prevalence of psychopathology in men with multigenerational family histories of alcoholism. J Nerv Ment Dis 178, 500-504.

21. Goodwin, D.W., 1985. Alcoholism and genetics. The sins of the fathers. Arch Gen Psychiatry 42, 171-174.

22. Hasin, D., Paykin, A., Endicott, J., 2001. Course of DSM-IV alcohol dependence in a community sample: effects of parental history and binge drinking. Alcohol Clin Exp Res 25, 411-414.

23. Hill, S.Y., Yuan, H., 1999. Familial density of alcoholism and onset of adolescent drinking. J Stud Alcohol 60, 7-17.

24.   Heath, A.C., Bucholz, K.K., Madden, P.A., Dinwiddie, S.H., Slutske, W.S., Bierut, L.J., Statham, D.J., Dunne, M.P., Whitfield, J.B., Martin, N.G., 1997. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 27, 1381-1396.

25. Kaprio, J., Koskenvuo, M., Langinvainio, H., Romanov, K., Sarna, S., Rose, R.J., 1987. Genetic influences on use and abuse of alcohol: a study of 5638 adult Finnish twin brothers. Alcohol Clin Exp Res 11, 349-356.

26.  Knopik, V.S., Heath, A.C., Madden, P.A., Bucholz, K.K., Slutske, W.S., Nelson, E.C., Statham, D., Whitfield, J.B., Martin, N.G., 2004. Genetic effects on alcohol dependence risk: re-evaluating the importance of psychiatric and other heritable risk factors. Psychol Med 34, 1519-1530.

27. Acheson, A., Richard, D.M., Mathias, C.W., Dougherty, D.M., 2011a. Adults with a family history of alcohol related problems are more impulsive on measures of response initiation and response inhibition. Drug Alcohol Depend 117, 198-203.

28.  Saunders, B., Farag, N., Vincent, A.S., Collins, F.L., Jr., Sorocco, K.H., Lovallo, W.R., 2008. Impulsive errors on a Go-NoGo reaction time task: disinhibitory traits in relation to a family history of alcoholism. Alcohol Clin Exp Res 32, 888-894.

29.  Acheson, A., Vincent, A.S., Sorocco, K.H., Lovallo, W.R., 2011b. Greater discounting of delayed rewards in young adults with family histories of alcohol and drug use disorders: studies from the Oklahoma family health patterns project. Alcohol Clin Exp Res 35, 1607-1613.

30. Foisy, M.L., Kornreich, C., Petiau, C., Parez, A., Hanak, C., Verbanck, P., Pelc, I., Philippot, P., 2007b. Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues? Psychiatry Res 150, 33-41.

31.  Foisy, M.L., Philippot, P., Verbanck, P., Pelc, I., van der Straten, G., Kornreich, C., 2005. Emotional facial expression decoding impairment in persons dependent on multiple substances: impact of a history of alcohol dependence. J Stud Alcohol 66, 673-681.

32.  Philippot, P., Kornreich, C., Blairy, S., Baert, I., Den Dulk, A., Le Bon, O., Streel, E., Hess, U., Pelc, I., Verbanck, P., 1999. Alcoholics’ deficits in the decoding of emotional facial expression. Alcohol Clin Exp Res 23, 1031-1038.

33.  Townshend, J.M., Duka, T., 2003. Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41, 773-782.

34.  Gilman, J.M., Hommer, D.W., 2008. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict Biol 13, 423-434.

35. Marinkovic, K., Oscar-Berman, M., Urban, T., O’Reilly, C.E., Howard, J.A., Sawyer, K., Harris, G.J., 2009. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol Clin Exp Res 33, 1880-1892.

36.  Salloum, J.B., Ramchandani, V.A., Bodurka, J., Rawlings, R., Momenan, R., George, D., Hommer, D.W., 2007. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol Clin Exp Res 31, 1490-1504.

37.  Wrase, J., Makris, N., Braus, D.F., Mann, K., Smolka, M.N., Kennedy, D.N., Caviness, V.S., Hodge, S.M., Tang, L., Albaugh, M., Ziegler, D.A., Davis, O.C., Kissling, C., Schumann, G., Breiter, H.C., Heinz, A., 2008. Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165, 1179-1184.

38.  Kornreich, C., Foisy, M.L., Philippot, P., Dan, B., Tecco, J., Noel, X., Hess, U., Pelc, I., Verbanck, P., 2003. Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Res 119, 251-260.

39.  Maurage, P., Campanella, S., Philippot, P., Martin, S., de Timary, P., 2008. Face processing in chronic alcoholism: a specific deficit for emotional features. Alcohol Clin Exp Res 32, 600-606.

40.  Fernandez-Serrano, M.J., Perez-Garcia, M., Schmidt Rio-Valle, J., Verdejo-Garcia, A., 2010. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol 24, 1317-1332.

41.  Durazzo, T.C., Tosun, D., Buckley, S., Gazdzinski, S., Mon, A., Fryer, S.L., Meyerhoff, D.J., 2011. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence. Alcohol Clin Exp Res 35, 1187-1200.

42.   Makris, N., Oscar-Berman, M., Jaffin, S.K., Hodge, S.M., Kennedy, D.N., Caviness, V.S., Marinkovic, K., Breiter, H.C., Gasic, G.P., Harris, G.J., 2008. Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64, 192-202.

43.   Benegal, V., Antony, G., Venkatasubramanian, G., Jayakumar, P.N., 2007. Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addict Biol 12, 122-132.

44.  Glahn, D.C., Lovallo, W.R., Fox, P.T., 2007. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry 61, 1306-1309.

45.   Hill, S.Y., De Bellis, M.D., Keshavan, M.S., Lowers, L., Shen, S., Hall, J., Pitts, T., 2001. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry 49, 894-905.

46.  Oscar-Berman, M., Bowirrat, A., 2005. Genetic influences in emotional dysfunction and alcoholism-related brain damage. Neuropsychiatr Dis Treat 1, 211-229.

47.  Sinha, R., Parsons, O.A., Glenn, S.W., 1989. Drinking variables, affective measures and neuropsychological performance: familial alcoholism and gender correlates. Alcohol 6, 77-85

48.  Verdejo-Garcia, A., Bechara, A., Recknor, E.C., Perez-Garcia, M., 2006. Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12, 405-415.

49.  Fox, H.C., Hong, K.A., Sinha, R., 2008. Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addict Behav 33, 388-394

 

The earlier you start drinking the greater the chance of being alcoholic

Early Onset to Begin Drinking

It is a very common theme in AA meetings and other 12 step groups about how young alcoholics started drinking. I always wondered if this had an effect on later alcoholism, although I know many alcoholics who started drinking much later in life. Looking at the research below it seems that the age a person started drinking can predict later problems with alcohol. Interestingly “disinhibited” behaviour, such as impulsiveness and not being able to “stop oneself” from engaging in certain behaviours also have a bearing on later alcohol problems, as does adverse childhood experiences   and the amount of alcoholism in the family.

The age of onset to begin regular drinking is an important predictor of age of first alcohol problem and subsequent alcohol dependence (1,2),  as well as greater severity and persistence of problems with illicit drugs (3).

dangerous_ways_young_people_consuming_alcohol

For individuals that initiated drinking prior to age 14 years, the likelihood of adult alcohol dependence was 40%, four times more likely than individuals who began drinking at 20 years or older (2) .  It was also reported that individuals that drank before age 14 years were more than twice as likely to become alcohol dependent than those trying alcohol after age 16 years (4).

A number of factors such as early adverse childhood experiences (5,6)  and familial density of alcoholism (7,8), predict earlier age of drinking onset.

Earlier onset of drinking also appears to be related to the presence of behaviors often characterized as “disinhibited”.There is also abundant evidence that behavioral under-control is an important determinant of later development of substance use disorders (SUD) (9,10). Behavioral under-control observed as early as 3 years is predictive of alcohol-related problems at 21 years (11), and in adolescents mediates the relationship between family history of alcoholism and young adult SUDs (12)

img_20130926_164743

References

1. Hawkins JD, Graham JW, Maguin E, Abbott R, Hill KG, Catalano RF. Exploring the effects of age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse.Journal of Studies Alcohol. 1997;58(3):280–290.[PMC free article]

2. Grant BF, Dawson DA. Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey.Journal of Substance Abuse. 1997;9:103–110.

3. Kandel DB, Yamaguchi K, Chen K. Stages of progression in drug involvement from adolescence to adulthood: further evidence for the gateway theory. Journal of Studies Alcohol.1992;53(5):447–457.

4. Sartor CE, Lynskey MT, Heath AC, Jacob T, True W. The role of childhood risk factors in initiation of alcohol use and progression to alcohol dependence. Addiction.2007;102(2):216–225.

5. Rothman EF, Edwards EM, Heeren T, Hingson RW. Adverse childhood experiences predict earlier age of drinking onset: results from a representative US sample of current or former drinkers. Pediatrics. 2008;122(2):e298–e304.

6. Waldrop AE, Ana EJ, Saladin ME, McRae AL, Brady KT. Differences in early onset alcohol use and heavy drinking among persons with childhood and adulthood trauma. American Journal on Addictions. 2007;16(6):439–442.

7. Hill SY, Yuan H. Familial density of alcoholism and onset of adolescent drinking. Journal of Studies on Alcohol.1999;60(1):7–17.

8.  Hill SY, Shen S, Lowers L, Locke J. Factors predicting the onset of adolescent drinking in families at high risk for developing alcoholism. Biological Psychiatry. 2000a;48(4):265–275.

9. Stice E, Barrera M, Jr., Chassin L. Prospective differential prediction of adolescent alcohol use and problem use:examining the mechanisms of effect. Journal of Abnormal Psychology.1998;107(4):616–628

10. Zucker RA. Anticipating problem alcohol use developmentally from childhood into middle adulthood: what have we learned?Addiction. 2008;103(Suppl 1):100–108. [PMC free article]

11.  Caspi A, Moffitt TE, Newman DL, Silva PA. Behavioral observations at age 3 years predict adult psychiatric disorders. Longitudinal evidence from a birth cohort. Archives of General Psychiatry. 1996;53(11):1033–1039.

12. King KM, Chassin L. Mediating and moderated effects of adolescent behavioral undercontrol and parenting in the prediction of drug use disorders in emerging adulthood.Psychology of Addictive Behaviors. 2004;18(3):239–249.