Alcoholics Anonymous and Reduced Impulsivity: A Novel Mechanism of Change

Impulsivity or lack of behaviour inhibition, especially when distressed, is one psychological mechanisms which is implicated in all addictive behaviour from substance addiction to behaviour addiction.

It is, in my view, linked to the impaired emotion processing as I have elucidated upon in various blogs on this site.

This impulsivity is present for example in those vulnerable to later alcoholism, i.e. sons and daughters of alcoholic parents or children  from a family that has a relatively high or concentrated density of alcoholics in the family history, right through to old timers, people who have decades of recovery from alcoholism.

It is an ever present and as a result part of a pathomechanism of alcoholism, that is it is fundamental to driving alcoholism to it’s chronic endpoint.

It partly drives addiction via it’s impact on decision making – research shows people of varying addictive behaviours choose now over later, even if it is a smaller short term gain over a greater long term gain. We seem to react to relieve a distress signal in the brain rather than in response to considering and evaluating the long term consequences of a decision or act.

No doubt this improves in recovery as it has with me. Nonetheless, this tendency for rash action with limited consideration of long term consequence is clearly a part of the addictive profile. Not only do we choose now over then, we appear to have an intolerance of uncertainty, which means we have difficulties coping with uncertain outcomes. In other words we struggle with things in the future particularly if they are worrying or concerning things, like a day in court etc. The future can continually intrude into the present. A thought becomes a near certain action, again similar to the though-action fusion of obsessive compulsive disorder. It is as if the thought and possible future action are almost fused, as if they are happening in unison.

Although simple, less worrying events can also make me struggle with leaving the future to the future instead of endless and fruitlessly ruminating about it in the now. In early recovery  especially I found that I had real difficulty dealing with the uncertainty of future events and always thought they would turn out bad. It is akin to catastrophic thinking.

If a thought of a drink entered into my head it was so distressing, almost as if I was being dragged by some invisible magnet to the nearest bar. It was horrendous. Fortunately I created my own thought action fusion to oppose this.

Any time I felt this distressing lure of the bar like some unavoidable siren call of alcohol I would turn that thought into the action of ringing my sponsor. This is why sponsees should ring sponsors about whatever, whenever in order to habitualize these responses to counteract the automatic responses of the addicted brain.

I think it is again based on an inherent emotion dysregulation. Obsessive thoughts are linked to emotion dysregulation.

My emotions can still sometimes control me and not the other way around.

Apparently we need to recruit the frontal part of the brain to regulate these emotions and this is the area most damaged by chronic alcohol consumption.

As a result we find it difficult to recruit this brain area which not only helps regulate emotion but is instrumental in making reflective, evaluative decisions about future, more long term consequence. As a result addicts of all types appear to use a “bottom up” sub-cortical part of the brain centred on the amgydala region to make responses to decisions instead of a “top down” more cortical part of the brain to make evaluative decisions.

We thus react, and rashly act to relieve the distress of undifferentiated emotions, the result of unprocessed emotion rather than using processed emotions to recruit the more cortical parts of the brain.

Who would have though emotions were so instrumental in us making decisions? Two parts of the brain that hold emotions in check so that they can be used to serve goal directed behaviour are the orbitofrontal cortex and the ventromedial prefrontal cortex.



These areas also keep amgydaloid responding in check. Unfortunately these two areas are impaired in alcoholics and other addictive behaviours so their influence on and regulation of the amgydala is also impaired.

This means the sub cortical areas of the amgydala and related regions are over active and prompt not a goal directed response to decision making but a “fight or flight” response to alleviate distress and not facilitate goal directed behaviour.



Sorry for so much detail. I have read so much about medication recently which does this or that to reduce craving or to control  drinking but what about the underlying conditions of alcoholism and addictive behaviour? These are rarely mentioned or considered at all.


We always in recovery have to deal with alcoholism not just it’s symptomatic manifestation of that which is chronic alcohol consumption. This is a relatively simple point and observation that somehow alludes academics, researchers and so-called commentators on this fascinating subject.

Anyway that is some background to this study which demonstrates that long term AA membership can reduce this impulsivity and perhaps adds validity to the above arguments that improved behaviour inhibition and reducing impulsivity is a very possible mechanism of change brought about by AA membership and the 12 step recovery program.

It shows how we can learn about a pathology from the recovery from it!

Indeed when one looks back at one’s step 4 and 5 how many times was this distress based impulsivity the real reason for “stepping on the toes of others” and for their retaliation?

Were we not partly dominated by the world because we could not keep ourselves in check? Didn’t all our decisions get us to AA because they were inherently based on a decision making weakness? Isn’t this why it is always useful to have a sponsor, someone to discuss possible decisions with?

Weren’t we out of control, regardless of alcohol or substance or behaviour addiction? Isn’t this at the heart of our unmanageability?

I think we can all see how we still are effected by a tendency not to think things through and to act rashly.

The trouble it has caused is quite staggeringly really?

Again we cite a study (1) which has Rudolf H. Moos as a co-author. Moos has authored and co-authored a numbered of fine papers on the effectiveness of AA and is a rationale beacon in a sea of sometimes quite controversial and ignorant studies on AA, and alcoholism in general.


Reduced impulsivity is a novel, yet plausible, mechanism of change associated with the salutary effects of Alcoholics Anonymous (AA). Here, we review our work on links between AA attendance and reduced impulsivity using a 16-year prospective study of men and women with alcohol use disorders (AUD) who were initially untreated for their drinking problems. Across the study period, there were significant mean-level decreases in impulsivity, and longer AA duration was associated with reductions in impulsivity…

Among individuals with alcohol use disorders (AUD), Alcoholics Anonymous (AA) is linked to improved functioning across a number of domains [1, 2]. As the evidence for the effectiveness of AA has accumulated, so too have efforts to identify the mechanisms of change associated with participation in this mutual-help group [3]. To our knowledge, however, there have been no efforts to examine links between AA and reductions in impulsivity-a dimension of personality marked by deficits in self-control and self-regulation, and tendencies to take risks and respond to stimuli with minimal forethought.

In this article, we discuss the conceptual rationale for reduced impulsivity as a mechanism of change associated with AA, review our research on links between AA and reduced impulsivity, and discuss potential implications of the findings for future research on AA and, more broadly, interventions for individuals with AUD.

Impulsivity and related traits of disinhibition are core risk factors for AUD [5, 6]. In cross-sectional research, impulsivity is typically higher among individuals in AUD treatment than among those in the general population [7] and, in prospective studies, impulse control deficits tend to predate the onset of drinking problems [811]

Although traditionally viewed as static variables, contemporary research has revealed that traits such as impulsivity can change over time [17]. For example, traits related to impulsivity exhibit significant mean- and individual-level decreases over the lifespan [18], as do symptoms of personality disorders that include impulsivity as an essential feature [21, 22]. Moreover, entry into social roles that press for increased responsibility and self-control predict decreases in impulsivity [16, 23, 24]. Hence, individual levels of impulsivity can be modified by systematic changes in one’s life circumstances [25].

Substance use-focused mutual-help groups may promote such changes, given that they seek to bolster self-efficacy and coping skills aimed at controlling substance use, encourage members to be more structured in their daily lives, and target deficits in self-regulation [26]. Such “active ingredients” may curb the immediate self-gratification characteristic of disinhibition and provide the conceptual grounds to expect that AA participation can press for a reduction in impulsive inclinations.

…the idea of reduced impulsivity as a mechanism of change…it is consistent with contemporary definitions of recovery from substance use disorders that emphasize improved citizenship and global health [31], AA’s vision of recovery as a broad transformation of character [32], and efforts to explore individual differences in emotional and behavioral functioning as potential mechanisms of change (e.g., negative affect [33,34]).

Several findings are notable from our research on associations between AA attendance and reduced impulsivity. First, consistent with the idea of impulsivity as a dynamic construct [18, 19], mean-levels of impulsivity decreased significantly in our AUD sample. Second, consistent with the notion that impulsivity can be modified by contextual factors [25], individuals who participated in AA longer tended to show larger decreases in impulsivity across all assessment intervals.


Blonigen, D. M., Timko, C., & Moos, R. H. (2013). Alcoholics anonymous and reduced impulsivity: a novel mechanism of change. Substance abuse, 34(1), 4-12.

Childhood Maltreatment and later Alcoholism/Addiction

One old timer I know often says two things that I often take issue with – 1. there are as many alcoholisms as alcoholics and that 2. we all come to AA in different boats but end up in the same dock.

Thanks to having a wife in Al Anon I have had the benefit of her insight and from other al-anons who state how remarkably similar we alcoholics are in our behaviour, particularly in dealing/coping with distress and stress, our emotional reactivity and at times immaturity (or so-called defects of character), I disagree that we are so different in our addictive behaviours.

All addictive behaviours from alcoholism, substance addiction, eating disorders to hypersexual disorder seem to be based on an inherent problem with emotion and stress dysregulation.

I believe I have a distress based condition. It results in what appear to be distress based reactions such as perfectionism, distress intolerance and frustration intolerance, normally exemplified in my shouting at my PC when it doesn’t work quickly enough or crashes!

I also believe I have distress based impulsivity, I want that thing, whatever it is, NOW. That anything!

In fact I have noticed when I want something, anything, I end up pathological wanting it in no time at all! It seems then like I NEED it. I too think this is based on distress and heighten stress reactivity.

In fact it is through this pathological wanting that my so-called defects of character that my examples  of emotional dysregulation appear.

If I can’t get what I want, all range of negative emotions spill forth such as intolerance, impatience, arrogance, pride, shame, selfishness etc .  They only appear when I want something and you are getting in the way of me having it!!

So there is a link between my motivation (which is dysregulated due to the effects of chronic stress which turns simple wanting into something more akin to “needing”) and my subsequent emotional dysregulation.

So where does this distress come from? Is it purely the effects of chronic stress dysregulation caused by years of neuro toxic brain damage or does it go back further, into childhood?

I do not think we all have separate alcoholisms, I feel we have remarkably similar reactions to life and these centre on an inherent difficulty regulating stress and emotion.

I also believe we have come to recovery in similar boats. In fact the majority of us have come to recovery in a remarkable similar boat so much so that it would resemble a gigantic ship rather than a boat. That boat is the ship of childhood maltreatment.

Child maltreatment has been frequently identified in the life histories of adolescents and adults in treatment for substance use disorders, as well as in epidemiological studies of risk factors for substance use and abuse.

 Child Maltreatment

One study (1) suggests there is ample evidence exists for higher rates of substance abuse and dependence among maltreated individuals.

In clinical samples undergoing treatment for substance use disorders, between one third and two thirds evince child abuse and neglect histories (Dembo, Dertke, Borders, Washburn, & Schmeidler, 1988Edwall, Hoffman, & Harrison, 1989Pribor & DiWiddie, 1992Schaefer, Sobieragi, & Hollyfield, 1988).

In the US a survey of over 100,000 youth in 6th though 12th grade, Harrison, Fulkerson, and Beebe (1997) Harrison, Fulkerson, and Beebe (1997) found that those reporting either physical or sexual abuse in childhood were from 2 to 4 times more likely to be using drugs than those not reporting abuse; the rates were even higher for youth reporting multiple forms of child maltreatment. Similar findings have been reported by Rodgers et al. (2004) and Moran, Vuchinich, and Hall (2004).

Among youth with Child Protective Services documented maltreatment, Kelly, Thornberry, and Smith (1999) reported one-third higher risk for drug use among those with an abuse history. In a large epidemiological study, Fergusson, Boden, and Horwood (2008) have shown physical abuse and particularly sexual abuse to be related to illicit drug use, as well as abuse and dependence.

Another Study (2) study would suggest the figures are much higher –   data were collected on 178 patients–101 in the United States and 77 in Australia–in treatment for drug/alcohol addiction. The purpose of the study was to determine the degree to which a correlation exists between child abuse/neglect and the later onset of drug/alcohol addiction patterns in the abuse victims. The questionnaire explored such issues as family intactness, parental violence/abuse/neglect, parental drug abuse, sibling relationships and personal physical/sexual abuse histories, including incest and rape. The study determined that 84% of the sample reported a history of child abuse/neglect.

A third study (1) stated that, using the Childhood Trauma Questionnaire-Short Form (CTQ-SF; Bernstein & Fink, 1998; Bernstein et al., 2003) to assess childhood maltreatment in a community sample of active drug users, Medrano, Hatch, Zule, and Desmond (2002) found that 53% of women and 23% of men were sexually abused, 53% of women and 43% of men were physically abused, 58% of women and 39% of men were emotionally abused, 52% of women and 50% of men were physically neglected, and 65% of women and 52% of men were emotionally neglected.

Substance abusers, in addition to having higher rates of childhood maltreatment than members of the general population, have been found to have levels of psychological distress that increase with increasing severity of all types of childhood maltreatment (Medrano et al., 2002). This association is important considering that stress increases an individual’s vulnerability to addiction and addiction relapse (Goeders, 2003; Sinha, 2001;Wills & Hirky, 1996).

There is also evidence that the way in which people cope with stress is related to substance use. For example, researchers have found that greater use of avoidance stress-coping strategies (i.e., disengaging from investing effort to cope with a problem) is related to a greater likelihood of drug use initiation, higher levels of ongoing drug use, and a greater probability of relapse, whereas greater use of active stress-coping strategies (i.e., taking steps to deal with a problem) most consistently functions to protect individuals from substance use initiation and relapse (Wagner, Myers, & McIninch, 1999; Wills & Hirky, 1996).

Childhood maltreatment may influence substance use behavior through its effect on stress and coping. There is emerging evidence that childhood maltreatment may negatively affect the maturation of self-regulatory systems that enable an individual to modulate and tolerate aversive emotional states (Cicchetti & Toth, 2005; Hein, Cohen, & Campbell, 2005). Childhood maltreatment may disrupt neurobiological development and elevate subjective stress by biologically altering the brain’s response to stress (Bugental, 2004;DeBellis, 2002; Heim & Nemeroff, 2001; Heim et al., 2000; Sinha, 2005; Wills & Hirky, 1996). Childhood maltreatment may also affect an individual’s characteristic style of coping with stress so that he or she may be more likely to rely upon maladaptive strategies, such as avoidance of problems, wishful thinking, and social withdrawal, rather than active strategies, such as seeking information and advice from others (Bal, Crombez, Van Oost, & Debourdeaudhuij, 2003; Futa, Nash, Hansen, & Garbin, 2003; Krause, Mendelson, & Lynch, 2003; Leitenberg, Gibson, & Novy, 2004; Thabet, Tischler, & Vostanis, 2004).

Elevated stress and maladaptive coping related to childhood maltreatment may translate to greater substance use behavior by making the coping motives of substance use appear more attractive (Wills & Hirky, 1996). Indeed, substance users commonly report using psychoactive substances such as alcohol, cannabis, and cocaine to cope with stress and regulate affect (Boys, Marsden, & Strang, 2001)

Most cocaine dependent inpatients reported multiple types of childhood maltreatment, and only 15% reported no maltreatment at all, (similar figures to study 2).

“Our findings suggest that the severity of overall childhood maltreatment experienced by recently abstinent cocaine dependent adults has a significant relationship with perceived stress and avoidance coping in adulthood.

Our findings suggest that having a more severe childhood maltreatment history may result in a greater sensitivity to stress…basic coping skills training may not be adequate in decreasing distress and avoidant coping in order to decrease substance use and relapse. Additional interventions that focus on stress tolerance, altering appraisals of stress, stress desensitization, and affect and emotion regulation skills may be of particular benefit to patients with childhood maltreatment histories.

The fact that childhood maltreatment is a preventable phenomenon that occurs early in life and affects psychological functioning well into adulthood makes our findings relevant to clinical practice with children as well. Early identification and treatment of maltreated children may help prevent stress sensitivity or the development of a less adaptive style of coping. Assessment of coping ability and the implementation of coping skills and stress tolerance training may also be indicated for maltreated children in an effort to increase their coping efficacy and decrease their vulnerability to stress later in life.”

I may have been in recovery for a number of years now but coping with stress/distress is still central to my recovery. Dealing with the effects of childhood maltreatment not only via negative self esteem and self schema but in the real sense of coping with every day stress/distress, mainly prompted in my interpersonal relationships (other people!) and with my PC!



1. Rogosch, F. A., Oshri, A., & Cicchetti, D. (2010). From child maltreatment to adolescent cannabis abuse and dependence: A developmental cascade model.Development and psychopathology, 22(04), 883-897.

2. Cohen, F. S., & Densen-Gerber, J. (1982). A study of the relationship between child abuse and drug addiction in 178 patients: Preliminary results. Child Abuse & Neglect, 6(4), 383-387.

3.  Hyman, S. M., Paliwal, P., & Sinha, R. (2007). Childhood maltreatment, perceived stress, and stress-related coping in recently abstinent cocaine dependent adults. Psychology of Addictive Behaviors, 21(2), 233.

“I don’t know how I feel, therefore I act!”

One of my pet hates in experimental study is researchers suggesting that one can generalise findings from a non-clinical group of participants in a particular study to a clinical  group, not in the study. For example, most studies in Psychology and in Neuroscience are conducted on very well informed, healthy undergraduate Psychology students with the suggestion that the findings will also be seen in a clinical groups such as alcoholics or addicts. That the findings have ecological validity, they will also be observed in the reality of addicts in real everyday life.

Obviously this is very controversial. How can you one really say that brain processes in a perfectly healthy undergraduate psychology student are similar to those suffering from a mental disorder such as addiction?

It is clear that the behavioural responses of someone with an addictive disorder will be different to those with a perfectly healthy adaptive brain and adaptive behavioural choices. The point of addiction, is that individuals with an addictive disorder often make maladaptive choices and make poor decisions as many brain processes and mechanisms have become chronically impaired. They tend to choose now over then, be very emotional reactive, use “fight or flight” responding to situations rather than reflective, evaluative, goal-directed, action-outcome type of thinking…the list goes on and on, believe me!

In other words, they tend to act in a very different way to healthy undergraduate studies!

I do not have a problem with using undergraduate studies but please do not attempt to generalise findings to a clinical group, or in other words, a group suffering a psychiatric disorder. It is like saying that a study observed in healthy 19-20 year olds could also be said to exist or occur in middle aged schizophrenics? Most rational people would view this as quite peculiar, to say the least. So why do this very same thing with those suffering another mental disorder, called addiction?



So why do it at all, use students as participants? Well the study I refer to in this blog shows why using a student sample may have utility. If nothing else this sampling of students provides a control group – that is a group that can act as a “healthy” group compared to a later study  which has used a clinical group as participants. This way we can compare results to observe differences in both sample groups and this can highlight fundamental differences (and sometimes similarities) in healthy and clinical groups and may help highlight specific difficulties which may need to be considered in treating these clinical groups.

Also, and importantly for our overall discussion, through many of our blogs thus far,  regarding the role of emotional processing deficits in impulsivity and decision making deficits in addiction, this type of study can look at “proof of concept” which can then be studied in clinical groups such as those with addictive disorders.

But one must also have the proviso that generalising to this clinical group is not without it’s pitfalls. Just because a certain behavioral manifestation is seen in one healthy group, which has also been seen in a more severe from in a clinical  group , it does not follow that this severity is simple down to using a substance more chronically.

Severity may also be a function of genetic expression within a specific type of environment, e.g. a genetic vulnerability in an “at risk” son of an alcoholic reared in a emotionally abusive background may be a main reason for certain behavioural manifestation rather than simply chronic substance use. Altered stress systems may represent in a similar manner to the chronic toxic effects of chronic drug use but not actually be driven by the same mechanisms or underlying processes.

Regardless on these many sensible caveats, it is still possible to look at certain psychological  traits and relate them to certain behaviours before testing whether these are also observed in a clinical  group such as those with addictive disorders.

The study we refer to here (1) used a large sample of 429 undergraduate students and examined the nature of the relationship between alexithymia and impulsivity.  “Alexithymia is a multifaceted personality construct that is characterized by difficulty identifying and describing feelings  (Taylor, 2000). Alexithymia is associated with a range of disorders, many of which are associated with poor impulse control (Parker, Wood, Bond, & Shaughnessy, 2005; Thorberg, Young, Sullivan, & Lyvers, 2009).
The development of emotional awareness and skills to express feelings are strongly linked to cognitive development because humans use language to identify and express their feelings. According to Taylor, Bagby, and Parker (1997), all individuals have emotions (i.e., neurophysiological arousal), but how we feel the emotions differ
based on our subjective cognitive understanding and experiences.
Without adequate words to describe various neurophysiological stimuli, we cannot feel (identify and describe) them accurately and precisely, and thus we have difficulties regulating our behaviors that follow the emotions (Lane & Schwartz, 1987; Taylor et al., 1997).
The emotional awareness theory presented by Lane and Schwartz (1987) has provided some explanations for the development of alexithymia (Taylor, 2000; Taylor et al., 1997). According to this theory, individuals with alexithymia are considered to be on the first two levels of emotional awareness (i.e., sensorimotor reflexive and sensorimotor enactive) as their abilities to cognitively identify
various feelings precisely by recognizing specific physiological signs of emotions are not yet fully developed (Taylor et al., 1997).
Perhaps, lack of cognitive representations for neurophysiological stimuli may make individuals with alexithymia distressed…and thus they may use alcohol to alleviate their discomfort (Kauhanen et al., 1992; Thorberg et al., 2009; Uzun, 2003)… impulsive individuals tend to rely on reflexive affective (emotional) processes rather than on reflective cognitive processes, to lead their behaviors (Lieberman, 2007; Metcalfe & Mischel, 1999)… impulsivity and alexithymia research emphasize the necessity of using reflective and sophisticated cognitive processes in order to
better regulate emotions and behaviors (Carlson, 2007; Cyders & Smith, 2008)… it is plausible that alexithymia and impulsivity are related under a higher order structure, namely neuroticism, and thus they robustly predict behaviors associated with emotion dysregulation.

This study demonstrated that individuals with alexithymia are more likely to act impulsively when experiencing heightened negative affect…and thus engage in more drinking or experience more negative consequences after drinking.



These results support the use of treatment models that emphasize awareness of feelings and psychological mindfulness as these treatment approaches help clients learn to identify and acknowledge their feelings first, in order to learn how to better regulate them. The results indicate that deficits in the cognitive representation of emotional experience may contribute to impulsive action when emotionally aroused. The current findings may help explain why alexithymia has been identified
as a risk factor for many psychological problems that involve emotional and behavioral regulation deficits, including substance use related disorders (Kauhanen et al., 1992; Troisi et al., 1997).”

Essentially this study on undergraduates has observed similar findings as seen in addicted individuals but this does mean the findings generalise. It means that there is theoretical utility in further exploring this link between emotional processing deficit, alexithymia, the psychological trait of impulsivity and the behavioural manifestation of chronic addiction. Finally it may also be possible by scrutinizing results to identify key differences between these two samples which may aid treatment, intervention and even prevention. We have often mentioned that prevention may in the future involve the identification of emotional processing and regulation deficits in “at risk” children and helping them process emotions more adaptively and effectively.

Addiction seems even more tragic if one considers addiction as the consequence of processes that could possible be rectified or improved in early childhood. Emotional dysregulation heightens the effects of drugs and alcohol also and sets up a viscous cycle of use that often leads to chronic addiction.

It may be the source or rather the heart of the problem.  Prevention would then need to act at the heart of this disorder.



Shishido, H., Gaher, R. M., & Simons, J. S. (2013). I don’t know how I feel, therefore I act: alexithymia, urgency, and alcohol problems. Addictive behaviors, 38(4), 2014-2017.

Explaining the negative consequences of Negative Urgency.

Explaining how negative Negative Urgency can be.

from Inside the Alcoholic Brain by alcoholicsguide

In various blogs we have suggested that one of the main aspects of addictive behaviours is to act as the result of distress-based impulsivity or negative urgency. Here we explore in more details what we mean by that term negative urgency.

Here we borrow from one article (1) which has an excellent review of  negative urgency (1).

The experience of emotion facilitates action. It has long been recognized that emotional processing appears to prepare the body for action (Frijda, 1986; Lang, 1993; Saami, Mumme, & Campos, 1998). In fact, to emote means, literally, to prepare for action (Maxwell & Davidson, 2007). Researchers have theorized that the relationship between emotional experiences and actions involve activation of the motor cortex by limbic structures (Morgenson, Jones, & Yim, 1980).

Some investigations have used neuroimaging techniques to document increased activity in motor areas of the brain during emotional processing (Bremner et al., 1999; Rauch et al., 1996), and nonhuman studies suggest the emotion-action interface may involve connections between the amygdala and the anterior cingulate cortex (ACC: Devinsky, Morrel, & Vogt, 1995).

Hajcak et al. (2007) found that emotionally arousing stimuli increase motor cortex excitability. The authors theorized that there may be individual difference in emotional reactivity that may relate to differences in the amount of activation of the motor cortex areas.

One takes action to meet the need identified by the emotion.Pinker (1997) makes this point by noting that “Most artificial intelligence researchers believe that freely behaving robots . . . will have to be programmed with something like emotions merely for them to know at every moment what to do next” (p. 374).

Intense emotions can undermine rational, advantageous decision making (Bechara, 2004, 2005;Dolan, 2007; Driesbach, 2006; Shiv et al., 2005). It also appears to be true that attempts to regulate negative emotions can impair one’s ability to continue self-control behaviors (Muraven & Baumeister, 2000; Tice & Bratslavsky, 2000; Tice,Bratslavsky, & Baumeister, 2001).

Thus, it is not surprising that individuals engage in other strategies to manage intense emotions that are ill-considered and maladaptive, in that they work against one’s long-term interests. For example, heavy alcohol use may be used to manage emotion. Daily diary studies of alcohol use indicate that individuals drink more on days when they experience anxiety and stress (Swendson et al., 2000).

Indeed, negative affect states have been shown to correlate with a greater frequency of many maladaptive, addictive behaviors, including alcohol and drug abuse (Colder & Chassin, 1997;Cooper, 1994; Cooper et al., 2000; Martin & Sher, 1994;Peveler & Fairburn, 1990). This pattern also is true of bulimic behaviors; individuals tend to participate in more binge eating and purging behaviors on days during which they experienced negative emotions (Agras & Telch, 1998; Smyth et al., 2007). Emotions such as shame, guilt, anger, depression, loneliness, stress, anxiety, boredom, and rejection are often cited as triggers for binge and purge episodes (Jeppson, Richards, Hardman, & Granley, 2003). For bulimic women, engaging in binge eating produces a decline in the earlier negative emotion (Smyth et al., 2007). Because actions like these do appear to reduce negative affect, they are reinforced.

Brain Pathways Related to Emotion-Based Action

Brain system involved in emotion and action -the amygdala, the orbitofrontal cortex (OFC) and its medial sector (the ventromedial prefrontal cortex, or VM PFC:Bechara, 2005), and other areas of the prefrontal cortex (PFC:Barbas, 2007). The amygdala appears to be heavily involved in the experience of negative affect; more broadly, it is thought to play a role in directing attention to emotionally salient stimuli, particularly stressful or disturbing stimuli (Davidson, 2003).


The OFC appears to be involved in the modulation of emotion-based reactivity (Davidson, 2003).

OFC activity overrides emotional responses, apparently by providing information and a bias toward long-term, goal-directed behavior (Lewis & Todd, 2007).

Davidson and his colleagues (Davidson, 1998, 2000,2003;Davidson & Irwin, 1999; Davidson, Putnam, & Larson, 2000) suggest the experience of intense emotion, and its accompanying potential actions, is inconsistent with one’s long-term goals. The OFC, perhaps particularly the left VM PFC, provides a biasing signal to avoid immediate reward, and thus maintain one’s pursuit of one’s longer-term goals. Davidson (2003) refers to this process as affect-guided planning and anticipation: with healthy left VMPFC functioning, one gains access to the emotion associated with anticipated outcomes consistent with one’s long-term goals. The ability to do so is, Davidson argues, the hallmark of adaptive, emotion-based decision making. At times, long-term affect-guided planning is difficult: the experience of intense emotions unrelated to one’s long-term interests may disrupt processing with regard to those interests (Gray, 1999; Preston, Buchanan, Stansfield, & Bechara, 2007). But healthy functioning of the left VM PFC helps one maintain an affective connection to one’s longer-term goals, and thus plan accordingly.

Damage to the OFC, and perhaps damage specifically to the VM PFC, results in affective lability and rash action particularly in inhibiting the action of amygdaloid reactivity.




The authors of this study put forward various reasons why OFC and VM PFC damage can cause rash action – we consider these before forwarding our own ideas of why OFC/ VM PFC damage may prompt distress based impulsivity.

The OFC, perhaps particularly the left VM PFC, provides a biasing signal to avoid immediate reward, and thus maintain one’s pursuit of one’s longer-term goals. Davidson (2003) refers to this process as affect-guided planning and anticipation: with healthy left VM PFC functioning, one gains access to the emotion associated with anticipated outcomes consistent with one’s long-term goals. Activation of the left VM PFC also appears to inhibit amygdalar activity (Davidson, 1998), thus shortening the time course of the experience of negative affect and attention to stressful stimuli. Because negative affect stimulates autonomic nervous system (ANS) activity, which provides support for action in response to distress, prolonged negative affect leads to prolonged ANS arousal (Davidson, 2000). Perhaps a greater duration of ANS arousal increases the likelihood of affect-triggered action. Activity in the amygdala appears to facilitate this process.

Damage to the OFC, and perhaps damage specifically to the VM PFC, results in affective lability and rash action. Individuals with PFC damage, and with OFC damage in particular, do not; they do not appear to have the normal anticipatory affective response to potential punishment (Bechara, 2004; Bechara, Tranel, Damasio, & Damasio, 1996; Cardinal et al., 2002).

Thus, OFC damage appears to impair affective anticipation of potential risk to one’s actions.

Bechara, Damasio, Damasio, and Anderson (1994) described OFC-damaged individuals as oblivious to the future consequences of their actions, but sensitive to immediate reinforcement and punishment. Thus, their actions tend to be guided by immediate consequences only. These patients had otherwise retained their intellectual capacities, including abstract reasoning skills. They could even describe possible future consequences in realistic language. They appeared simply to lack the anticipatory affect that others have; thus perhaps lacking the affect-guided anticipation described byDavidson (2003).

The authors then  suggest that  associations between the OFC/VM PFC-amygdala system and psychopathy are  consistent with their claim of an association between this system and the urgency traits. In other words, individuals high in psychopathy have reduced VM PFC functioning, and hence lack an affective connection to the consequences of their actions. Other studies have also documented similar OFC functioning deficits among psychopaths (Blair et al., 2006; Mitchell, Colledge, Leonard, & Blair, 2002).

This model is interesting but there is not mention of stress systems in this model although the authors mention distress and negative affect but not the stress chemicals underpinning these affective manifestations.

The authors also do no mention two hugely important points we believe;

a. that this amgydaloid (hyper) activity, caused by PFC dysfunction can also “offline” PFC activity (fig.1)

b. in favour of the compulsive, emotive-motoric behaviour of the dorsal striatum which drives rash action, distress-based impulsivity or compulsivity rendering the individual remote to negative consequence of actions, although he/she may be able to explain clearly these consequences. prior to or after seeming to not consider them. It is chronic stress dysregulation in addiction that “cuts off” access to action-outcome or goal-directed parts of the brain and recruits stimulus response, implicit, “must do” action instead.

fig 1.

nihms197465f5 (1)

This we believe is the mechanism of negative urgency rather than as the authors suggest in this article, but not included, that VMPFC damage renders individuals unknowing of consequence, when rather, consequence, negative or otherwise, has been cut off by this amygdaolid activity rendering action  outcome associations remote to consciousness.  The brain acts implicitly, procedurally or in a stimulus response way to distress we believe in addictive disorders when heightened amgydaloid reactivity  is in charge of behaviour with VMPFC deficit contributing to this amgydaloid dysfunction.

An argument against simply seeing rash behaviour as the result of OFC or VMPFC damage which leads to lack of knowledge of consequence is that it does not really consider the chronic stress that accompanies addictive behaviours and which creates a near constant distress which acts in the way we describe above.

This does not mean that there is a lack of emotionally guided behaviour or action on the part of addicts. It would appear, as discussed in previous blogs, that emotional processing deficits are common in addiction and may not recruit the goal-directed parts of the brain as the authors suggest. They do not guided action or choices effectively. As a result they manifest in perhaps crude, undifferentiated or processed forms as distress signals instead and recruit more limbic, motoric regions of the brain.  Hence they are not use to anticipate future, long term consequence.

We are simply adding that as addiction becomes more chronic, so does stress and emotional distress and this appears to lead to a distress-based “fight or flight” responding to decision making that the authors have mentioned in this article but not elucidated as above. Addicts increasing appear to recruit sub-cortical or limbic areas in decision making and this is prevalent in abstinence as in active using. it is the consequence of chronic and stress dysregulation.

We suggest that this chronic stress prompts negative urgency via an hypofunctioning ACC (2) and by a “emotional arousal habit bias” as seen in post traumatic stress disorder (3) whereby chronic emotional distress increasingly during the addiction cycle comes to implicitly activate dorsal striatal responding “offlining” the PFC in a similar manner to fig. 1.


1. Cyders, M. A., & Smith, G. T. (2008). Emotion-based dispositions to rash action: positive and negative urgency. Psychological bulletin, 134(6), 807.

2. Li, C. S. R., & Sinha, R. (2008). Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal–limbic dysfunction in psycho-stimulant addiction. Neuroscience & Biobehavioral Reviews,32(3), 581-597.

3. Goodman, J., Leong, K. C., & Packard, M. G. (2012). Emotional modulation of multiple memory systems: implications for the neurobiology of post-traumatic stress disorder.


Are Alcoholics Emotionally Immature?

Concerted attempts have been made to relate personality factors to alcohol dependence.

In fact, for many years, research attempted to define the so-called alcoholic personality. Attempts to do so have dwindled in recent years.

Potential alcoholics tend to be emotionally immature, expect a great deal of the world, require an inordinate amount of praise and appreciation, react to failure with marked feelings of hurt and inferiority, have a low frustration tolerance, and feel inadequate and unsure of their abilities to fulfil expected male or female roles.1

Although the obvious emotional immaturity often seen in alcoholics seems to cover a number of the more recent findings on bio-psychologcal aspects a alcoholism.

For example, if we partly defined emotional immaturity as containing some of the following, then we appear to be covering a number of much researched and demonstrated aspects of alcoholism. Do these then not come under an umbrella term of emotional immaturity? This list was complied by Psych Central

Dimensions of Emotional maturity

  1. The ability to modulate emotional responses.  Addicts tend to have an all or nothing emotional response.  When they respond they become overly emotional and take a longer time to return to baseline.  They are easily flooded with emotion to the point of impairing functioning.
  1. The ability to tolerate frustration.  Addicts tend to respond to frustrating situations as disasters rather than having any perspective.
  1. The ability to delay gratification.  Emotionally immature people have trouble planning and working toward goals.  The ability to give up immediate gratification is necessary for anyone to go about life in a successful way.
  1. The ability to control impulses.  The mature self has the ability to see that feeling the urge to do something is not the same as doing it.  The recovering addict has a level of control over his or her behavior and can put boundaries around what is inappropriate to say or do.
  1. The ability to be reliable and accountable.  Addicts are often self centered and not good at dealing with the everyday requirements of life like being on time, fulfilling obligations and telling the truth.  As they gain emotional maturity they gain the ability to get out of themselves and think about the impact of their actions on others and on their own lives as well.




According to a list drawn up by

If people are emotionally immature, they may exhibit some of the following symptoms:

* Such individuals will often find it hard to deal with the normal challenges of life. When they are faced with problems they feel unable to cope. They may have developed a psychological state known as learned helplessness.

They struggle to develop meaningful relationships with other people. They may appear too needy or a bit overbearing.
* Those people who are emotionally immature will tend to have a pessimistic outlook on life. They may see the future as a threatening and hostile place.
* This type of person will usually have low self-esteem. This means that they do not value themselves highly so will be willing to accept very little in life as being all they deserve.
* They find it almost impossible to live in the present moment. They are either reliving the past or worrying about the future.
* They can easily lose their temper at the slightest provocation. When they are dealing with uncomfortable emotions they will tend to take things out on other people.

* People who are emotionally immature can have unrealistically high expectations. This means that they are frequently disappointed. Such and individual can have impossibly high expectations for other people yet low expectations for themselves.
* Such individuals can suffer from severe mood swings. This instability of mood can make life a bit uncomfortable.
* If people are emotionally immature, they find it much harder to control their own behavior.

Recognize any of these symptoms?

images (26)

We were completely like this before doing the 12 steps.

We, however, do not think that anyone, alcoholics or otherwise choose to behave in this emotional immature way.

We have already looked at the emotional distress accompanies alcoholism and addiction, and will be examining more in the months ahead and it is difficult not to see the above emotional immaturity as all being products of a distress state.

In the course of addiction the alcoholic in particular grows in emotional distress as the stress and emotional dysregulation associated with addiction increases.

This means the brain “collapses” from more cortical, goal-directed (and emotionally regulated) areas of the brain to more sub-cortical areas which are more automatic, unthinking and compulsive.

Emotional distress activates these areas of habit-like compulsive behaviour, acting as a stimulus response, distress the stimulus and compulsive (unthinking)  responding as the response.

This is like a distress based or “fight or flight” reality or a heightened emotional state or “emergency” state. It seems to us that alcoholics live in this region more than cortical regions. They are primed to go off!

They then have a tendency to either run away from situations or to fight “everybody and everything”, to be intolerant of uncertainty, to catastrophize, to be fear-based people to be over reactive, hypervigilant, perfectionist etc These are all distress based states.

Are aspects of the  apparent emotional immaturity mentioned above not also not  a surface manifestation of these deep subcortical processes?

It is this state of heightened uncertainty and fear that whittles away at the alcoholic psyche. This amount of stress/distress promotes implicit, do, memory, over explicit, reflective, evaluative, memory. Distress makes one act without much thought of consequence, it makes one choose short term over greater long term gain, it makes one want to act impulsively or compulsively to alleviate distress. It is this distress that is in charge of action and emotional behaviour. It calls the shots.  A state of emergency has been called in the brain of the alcoholic.

I know it is widely shared at AA meetings that we got stuck in the emotional age of our first drink, in the early teens and never developed our emotional selves or capacity to regulate and process emotions. We are not sure this is completely true as the stress that accompanies alcoholism, as alcohol is literally classified as a pharmacological stressor,  not only causes chronic stress dysregulation but also the emotional dysregulation which accompanies this. It is emotional parts of the brain and the cortical areas that are supposed to keep them in check that are most impaired via chronic alcoholism.

Dr. Stephanie Brown (2) has explored these developmental changes in cognition, which lead to “alcoholic thinking.” She states that these changes refer “not only to rationalization, denial and frame of mind, but also to character traits that frequently accompany drinking. These include grandiosity, omnipotence and low frustration tolerance.” (3) These traits appear to be directly associated with the addictive process rather than with the individual’s personality prior to establishing this abusive cycle.

As alcohol becomes more dominant, the need to deny these changes becomes greater. It appears that there is an interaction between physiological changes and psychological defenses which creates emotional immaturity, self-centeredness and irresponsibility. Alcoholism becomes a thought disorder as well as an addiction to alcohol.

This is the consequence we believe of prefrontal atrophy and subcortical hypertrophy caused by chronic alcohol consumption, a constant injection a pharmacological stressor into the brain, wrecking the ability to maturely deliberate and instead rely on “I want it now!”  type of thinking.

We firmly believe this progression is to a state of constant distress signal in the brain and a cortical hyperarousal.

The alcoholic may not be emotionally distressed all the time but his brain is never satisfied, it constantly needs more, it finds only transient balance, via allostasis, it never finds true balance, i.e. homeostasis. it is always seeking, never reaching satiety, never completely at rest. This is emotionally exhausting.

It may represent, on superficial observation to some, the “emotional immaturity, self-centeredness and irresponsibility” (4) but is it really this simple, seeing these as the primary defenses and interpersonal style typical of normal development in the first three years of life or to characterize the addictive part of self as a “two-year-old child”?

Isn’t it more apt to say instead of  a “two-year-old wounded part of self begins to “drive the bus” and create havoc for all concerned” to say chronic stress manifest  as emotional distress “driving the bus”?

Thus a valid question remains for us and we ask it to our normies or earthling friends (i.e. non-alcoholics), wouldn’t you act in a childish if you were this distressed most of the time, having to rely on impaired emotional regulation and processing parts of the brain?



In fact, to all those normies or earthlings who are reading this blog, how well do you think or consider others when in a state of persistent and daily distress? In this heightened anxiety how good is your action outcome memory, goal-directed planning and awareness of future consequence?

Are you ever moody, emotionally volatile and over reactive in this state of high anxiety? Hyper sensitive? Ever strike out unthinkingly at others although you had not intended to? Leading to guilt and shame, and remorse and self pity which can in the fullest of time lead to depression? This is called a transient emotional dysregulation, distress leading to an emotional cascade. This is the brain of an alcoholic all the time. It can lead to dejection and relapse.

In this sate of nauseating anxiety, how well do you consider the consequence, negative or otherwise, or your fear-based decision making?  Do you choose the short term answer in these anxiety-filled moments just to simply relieve this distress this unpleasant feeling of doom? So do alcoholics!

It is not enough to call the alcoholic emotional immature or stuck in the “terrible twos”, although let’s face it the evidence for it is compelling at times!! Let’s instead understand the reasons for it. Would you like to be in a state of distress most of the time? It’s not a whole lot of fun!

The 12 steps help solve these issues, there is a solution to emotional immaturity – it leads to emotional maturity or emotional sobriety which is blogged about here also.

The next time the alcoholic is your life acts in an immature way don’t ask them why they are acting that way, ask them how they feel. instead. Get them to identify, label and process their feelings  by verbalizing them.

When the anxious amgydala has quelled and  it’s feverish responding quietened,  get them to an AA meeting where many tens of thousands of alcoholics are doing the same, “sharing”, processing their emotions by talking about them and how they really feel.



Not running away from them or intellectualizing about them, not fighting them. Simply saying in words how they feel.

It is a miracle awakening for us in recovery, the emotional regulation normies and earthlings take for granted.

The age of miracles is amongst us and it starts by opening your mouth, asking for help, getting help and getting real about what you are really feeling.

It is through sharing our deepest feelings that we start to mature and grow up.





1. Chaudhury, S.K. Das, B. Ukil,  Psychological assessment of alcoholism in males Indian J Psychiatry. 2006 Apr-Jun; 48(2): 114–117. doi: 10.4103/0019-5545.31602

2. Brown S. (1985). Treating the Alcoholic: A Developmental Model of Recovery. New York: John Wiley & Sons, Spring.

3. Brown, S. (1988). Treating Adult Children of Alcoholics: A Developmental Perspective. New York: John Wiley and Sons.



AA helps to reduce Impulsivity


One constant in studies on addiction and in alcoholism, in particular is the  fundamental role played by impulsivity in these disorders. It is seen to be present in early use but appears to be more distress based (i.e. more negative urgency based) as the addiction cycle becomes more chronic. This impulsivity has obvious consequences for propelling these disorders via impulsive behaviours and decision making difficulties.

Thus it then follows that any treatment of these addictive disorders must have treatment of impulsivity at the core as it appears to a fundamental pathomechanism.


Here, we review a study that on links  AA attendance and reduced impulsivity using a 16-year prospective study of men and women, who were initially untreated for their drinking problems. Across the study period, there were significant l decreases in impulsivity, and longer AA duration was associated with reductions in impulsivity.

Alcoholics Anonymous (AA) is linked to improved functioning across a number of domains [2,3]. As the evidence for the effectiveness of AA has accumulated, so too have efforts to identify the mechanisms of change associated with participation in this mutual-help group [4].

This study concluded that help-seeking and exposure to the “active ingredients” of various types of help (i.e., AA principles/practices, sponsors), which, in turn, leads to improvements in reduced impulsivity.

Impulsivity is typically higher among individuals in AUD treatment than among those in the general population [5] and, impulse control deficits tend to predate the onset of drinking problems [6-9].

Contemporary research has revealed that traits such as impulsivity can change over time [10]. Mutual-help groups like AA may promote such changes, given that they seek to bolster self-efficacy and coping skills aimed at controlling substance use, encourage members to be more structured in their daily lives, and target deficits in self-regulation [11].


impulse control.preview


Such “active ingredients” may curb the immediate self-gratification characteristic of disinhibition and provide the conceptual grounds to expect that AA participation can press for a reduction in impulsive inclinations. In turn, given the range of outcomes related to impulsivity (e.g., legal, alcohol-related, and psychosocial problems), decreases in impulsivity may account for part of the association between AA participation and improvements in these outcomes.

AA’s vision of recovery as a broad transformation of character [12], and  explores individual differences in emotional and behavioural functioning as potential mechanisms of change (13,14).

Such groups encourage members to be more structured and goal-directed, which may translate into greater efforts to delay gratification of one’s impulses and  to improve clients’ general coping skills (e.g., reduce avoidance coping).

Given that impulsivity is a risk factor for a host of problematic behaviors and outcomes beyond drinking-e.g., criminality [15], drug abuse [16], reckless driving and sexual practices [17],  lower quality of interpersonal relationships [18], and poor health [19] this reduced impulsivty is beneficial in other aspects too.

Notably, this effect was buffered by a higher quality of social support-a probable active ingredient of AA. Thus, the impact of reducing impulsivity may be widespread across a range of outcomes that are critical for long-term sobriety.


Our main caveat on this study is that it does not distinguish between different types of impulsivity and does not mention negative urgency (or distress-based impulsivity) which is more commonly seen is this sample group.

AA’s “active ingredients” may reduce distress, via a new found emotional regulation gained via the steps and use of a sponsor (acting as an external prefrontal cortex to help us inhibit our impulsive and distress based responses)  which in turns reduces our tendency to impulsive decision making and behaviour.


It would have been interesting in this study to have also measure how emotional dysregulation changed in the time span of 16 years (using the DERS scale) and to have used a different impulsivity scale i.e. used the UPPS-P scale which would both have helped more specificallylook  at the interaction of how emotional regulation and impulse control changed over the 16 year period.




1.  Blonigen, D. M., Timko, C., & Moos, R. H. (2013). Alcoholics anonymous and reduced impulsivity: a novel mechanism of change. Substance abuse, 34(1), 4-12.

2. Humphreys, K. Circles of recovery: Self-help organizations for addictions. Cambridge Univ Pr; 2004.

3.. Tonigan JS, Toscova R, Miller WR. Meta-analysis of the literature on Alcoholics Anonymous: Sample and study characteristics moderate findings. Journal of Studies on Alcohol. 1995

4. Kelly JF, Magill M, Stout RL. How do people recover from alcohol dependence? A systematic review of the research on mechanisms of behavior change in Alcoholics Anonymous. Addiction Research & Theory. 2009; 17(3):236–259.

5. Conway KP, et al. Personality, drug of choice, and comorbid psychopathology among substance abusers. Drug and alcohol dependence. 2002; 65(3):225–234. [PubMed: 11841894]

6. Caspi A, et al. Behavioral observations at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a birth cohort. Archives of General Psychiatry. 1996; 53(11):1033. [PubMed: 8911226]

7. Cloninger CR, Sigvardsson S, Bohman M. Childhood personality predicts alcohol abuse in young adults. Alcoholism: Clinical and Experimental Research. 1988; 12(4):494–505.

8. Elkins IJ, et al. Personality traits and the development of nicotine, alcohol, and illicit drug disorders: Prospective links from adolescence to young adulthood. Journal of abnormal psychology. 2006; 115(1):26. [PubMed: 16492093]

9. Sher KJ, Bartholow BD, Wood MD. Personality and substance use disorders: A prospective study. Journal of Consulting and Clinical Psychology. 2000; 68(5):818. [PubMed: 11068968]

10. Caspi A, Roberts BW, Shiner RL. Personality development: Stability and change. Annual Review of Psychology. 2005; 56:453–484

11. Moos RH. Active ingredients of substance use focused self help groups. Addiction. 2008; 103(3):387–396. [PubMed: 18269361]

12. White WL. Commentary on Kelly et al. (2010): Alcoholics Anonymous, alcoholism recovery, global health and quality of life. Addiction. 2010; 205:637–638. [PubMed: 20403015]

13. Kelly JF, et al. Mechanisms of behavior change in alcoholics anonymous: does Alcoholics Anonymous lead to better alcohol use outcomes by reducing depression symptoms? Addiction. 105(4):626–636. [PubMed: 20102345]

14. KELLY JF, et al. Negative Affect, Relapse, and Alcoholics Anonymous (AA): Does AA Work by Reducing Anger? Journal of studies on alcohol and drugs.

15. Krueger RF, et al. Personality traits are linked to crime among men and women: Evidence from a birth cohort. Journal of abnormal psychology. 1994; 103(2):328. [PubMed: 8040502]

16. McGue M, Slutske W, Iacono WG. Personality and substance use disorders: II. Alcoholism versus drug use disorders. Journal of Consulting and Clinical Psychology. 1999; 67(3):394. [PubMed: 10369060]

17. Caspi A, et al. Personality differences predict health-risk behaviors in young adulthood: Evidence from a longitudinal study. Journal of Personality and Social Psychology. 1997; 73(5):1052. [PubMed: 9364760]

18. Ozer DJ, Benet-Martinez V. Personality and the prediction of consequential outcomes. Annu. Rev. Psychol. 2006; 57:401–421. [PubMed: 16318601]

19. Bogg T, Roberts BW. Conscientiousness and Health-Related Behaviors: A Meta-Analysis of the Leading Behavioral Contributors to Mortality. Psychological Bulletin. 2004; 130(6):887. [PubMed: 15535742]









Understanding Emotional Processing Deficits in Addiction – Guest Blog

Understanding Emotional Processing Deficits in Addiction

by alcoholicsguide

We recently blogged on how alcoholics, and children of alcoholics, have difficulty with recognizing and differentiating external signs of emotions such as facial emotional expressions, now we will consider increasing evidence that alcoholics have difficulties with identifying and differentiating internal emotional states also.

Both these areas of research point to real difficulties in alcoholics in relation to the processing of emotion.

As we shall explain below, this deficit in emotional processing has real consequence for decision making capabilities and this has an important role to play in the initiation and maintenance of substance abuse and eventual addiction.

Alexythymia and Addiction

Effective emotion regulation skills include the ability to be aware of emotions, identify and label emotions, correctly interpret emotion-related bodily sensations, and accept and tolerate negative emotions (2,3).

Alexithymia is characterized by difficulties identifying, differentiating and expressing feelings. The prevalence rate of alexithymia in alcohol use disorders is between 45 to 67% (4,5)

Finn, Martin and Pihl (1987) investigated the presence of alexithymia among males at varying levels of genetic risk for alcoholism. They found that the high risk for alcoholism group was more likely to be alexithymic than the moderate and low genetic risk groups (6).

Higher scores on alexithymia were associated poorer emotion regulation skills, fewer percent days abstinent, greater alcohol dependence severity (7). Some studies have emphasized a right hemisphere deficit in alexithymia [8,9] based on the hypothesis that right hemisphere plays a more important role in emotion processing than the left [10, 11].

Dysfunction of the anterior cingulate cortex has been frequently argued, e.g., [12], and others have focused on neural substrates, such as the amygdala, insula, and orbitofrontal cortex (see the review in [13]). All different components of the the emotional regulation  network.

These models may interact with each other and also map onto the brain region morphological vulnerability mentioned as being prevalent in alcoholics.

Magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning (14) .

One might speculate that thinning of the corpus collosum may render alcoholics less able to inhibit negative affect in right hemisphere circuits.

Alcoholics are thus vulnerable to thinning of the corpus collosum and perhaps even to emotional processing difficulties (15 ). The inability to identify and describe affective and physiological experiences is itself associated with the elevated negative affect (16) commonly seen in alcoholics, even in recovery (17.

Thus, this unpleasant experience might prompt individuals to engage in maladaptive behaviors, such as excessive alcohol consumption, in an effort to regulate emotions, or, more specifically, cope with negative emotional states (18 )

One neuroimaging study (19) looked at and compared  various models of alexithymia showing people with alexithymia showed reduced activation in the dorsal ACC and right anterior insula (AI), and suggested individuals who exhibit impaired recognition of their own emotional states may be due to a dysfunction of the ACC-AI network, given these regions’ important role in self-awareness. These studies suggest alexithymics may not be able to use feelings to guide their behaviour appropriately.

The Iowa gambling task (IGT) was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice (20).

ep neg

The neural machinery in alexithymia is therefore activated more on the physiologic, motor-expressive level, similar to the study on children of alcoholics and thus may represent a vulnerability.

The function of the caudate is to regulate or control impulsivity and disinhibition. Individuals with alexithymia may work on the IGT impulsively rather than by using emotion-based signals. This IGT study suggests that individuals with alexithymia may be unable to use feelings to guide their behavior appropriately.

Alexithymic individuals thus may be unable to use emotion for flexible cognitive regulation. Thus, there may be dysfunction in the interaction of the aspects of the emotional response system in alexithymia with greater activation in the caudate (basal ganglia) and less activation in the mPFC in alexithymics during the IGT.

Thus alexithymics show weak responses in structures necessary for the representation of emotion used in conscious cognition and stronger responses at levels focused on action. This ties in with the blog on an emotional disease? and also  so how is your decision making? which suggested that alcoholics do not use emotion to guide decision making and rely on more motor, or automatic/compulsive parts of the brain to make decisions.

Consequently, alexithymics experience inflexible cognitive regulation, owing to impairment of the emotion guiding system. These dysregulated physiological responses over many years may result in untoward health effects such as drug addiction.

To illustrate this, one study demonstrated that patients with cocaine dependence had higher alexithymia scores compared with healthy control subjects (21).

In a study of 46 inpatients with alcohol abuse or dependence, the total TAS (Toronto Alexithymia Scale) score was significantly higher among those who relapsed after discharge than among those who did not, even when depressive symptoms were taken into account(4)

Cocaine-dependent patients also failed to activate the anterior cingulate and other paralimbic regions during stress imagery, suggesting dysregulation of control under emotional distress in these patients (22).

Instead, cocaine-dependent patients demonstrated greater craving-related activation in the dorsal striatum, a region that has been implicated in reward processing and obsessive–compulsive behaviours. The greater activation associated with alexithymia in men in the right putamen during stress is broadly consistent with earlier studies implicating the striatum in emotional motor responses.

This also corresponds to  the study of  children of alcoholics show significantly more activation in the left dorsal anterior cingulate cortex and left caudate nucleus a region associated with impulsive choice, illustrating perhaps in children of alcoholics a bias in brain decision-making systems as an underlying  elevated risk for alcoholism.

We have also suggested previously a ‘compulsive’ emotional  habit bias in endpoint addiction which reflects a stiumulus response or automatic behaviour in the face of emotional distress, which then influences an automatic decision making profile. This may be the effect of chronic drug use impacting on an inherited emotional expressive-motor decision making vulnerability seen in children of alcoholics.

In simple terms, these vulnerable individuals may recruit more automatic rather than goal-directed areas of the brain when making decisions. This would result in impulsive/compulsive decisions which do not fully consider consequences, negative or otherwise, of their decisions and resultant actions. This decision making profile would then have obvious consequences in terms of a propensity to addiction.


References (to be finished)

1. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula.Trends in neurosciences32(1), 56-67.

2. Berking M, Margraf M, Ebert D, Wupperman P, Hogmann SG, Junghanns K. Deficits in emotion-regulation skills predict alcohol use during and after cognitive-behavioral therapy for alcohol dependence. Journal of Consulting and Clinical Psychology. 2011;79:307–318

3. Gratz KL, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment.2004;26:41–54

4. Loas G, Fremaux D, Otmani O, Lecercle C, Delahousse J. Is alexithymia a negative factor for maintaining abstinence? A follow-up study. Comprehensive Psychiatry. 1997;38:296–299.

5. Ziolkowski M, Gruss T, Rybakowski JK. Does alexithymia in male alcoholics constitute a negative factor for maintaining abstinence. Psychotherapy and psychosomatics. 1995;63:169–173.

6.  Finn PR, Martin J, Pihl RO. Alexithymia in males at high genetic risk for alcoholism.Psychotherapy and Psychosomatics.1987;47:18–21

7.  Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

8. Miller L. Is alexithymia a disconnection syndrome? A neuropsychological perspective. Int J Psychiatry Med. 1986;7:199–209. doi: 10.2190/DAE0-EWPX-R7D6-LFNY.

9. Sifneos PE. Alexithymia and its relationship to hemispheric specialization, affect, and creativity.Psychiatr Clin North Am. 1988;7:287–292.

10. Buchanan DC, Waterhouse GJ, West SC Jr. A proposed neurophysiological basis of alexithymia. Psychother Psychosom. 1980;7:248–255. doi: 10.1159/000287465.

11. Shipko S. Further reflections on psychosomatic theory. Alexithymia and interhemispheric specialization. Psychotherapy and psychosomatics.

12. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Neural correlates of levels of emotional awareness Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J cognitive neuroscience. 1998;7:525–535. doi: 10.1162/089892998562924.

13. Wingbermühle E, Theunissen H, Verhoeven WMA, Kessels RPC, Egger JIM. The neurocognition of alexithymia: evidence from neuropsychological and neuroimaging studies.Acta Neuropsychiatrica. 2012;7:67–80. doi: 10.1111/j.1601-5215.2011.00613.x.

14. Oscar-Berman, M., & Bowirrat, A. (2005). Genetic influences in emotional dysfunction and alcoholism-related brain damage.

15. Sperling W, Frank H, Martus P, et al. The concept of abnormal hemispheric organization in addiction research. Alcohol Alcohol.2000;35:394–9.

16.  Connelly M, Denney DR. Regulation of emotions during experimental stress in alexithymia. Journal of Psychosomatic Research. 2007;62:649–656

17. Stasiewicz, P. R., Bradizza, C. M., Gudleski, G. D., Coffey, S. F., Schlauch, R. C., Bailey, S. T., … & Gulliver, S. B. (2012). The relationship of alexithymia to emotional dysregulation within an alcohol dependent treatment sample.Addictive Behaviors37(4), 469-476.

18.  Thorberg FA, Young RM, Sullivan KA, Lyvers M, Hurst CP, Connor JP, Feeney GFX. Alexithymia in alcohol dependent patients is partially mediated by alcohol expectancy. Drug and Alcohol Dependence. 2011;116:238–241

19. Moriguchi, Y., & Komaki, G. (2013). Neuroimaging studies of alexithymia: physical, affective, and social perspectives. BioPsychoSocial medicine7(1), 8.

20.  Kano M, Fukudo S. The alexithymic brain: the neural pathways linking alexithymia to physical disorders. BioPsychoSocial medicine. 2013;7:1. doi: 10.1186/1751-0759-7-1.

21.  Li, C. S. R., & Sinha, R. (2006). Alexithymia and stress-induced brain activation in cocaine-dependent men and women. Journal of psychiatry & neuroscience,31(2).

22.  Sinha, R., Lacadie, C., Skudlarski, P., Fulbright, R. K., Rounsaville, B. J., Kosten, T. R., & Wexler, B. E. (2005). Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study.Psychopharmacology183(2), 171-180.

Do alcoholics drive through life with Faulty Brakes!

There has been a lot of debate in the last thirty – forty years about genetic inheritance – with at least half of children of alcoholic families at risk for later alcoholism. What is less known is what exactly is inherited in our genes? What marks us out for later alcoholism? Prior to drinking are there aspects of our behaviour, personality or emotional responding that marks us out compared to so-called normal healthy types.

Recently research has looked at brain systems which overlap in decision making such as cognitive control over impulsive behaviour and also emotional processing. Children from alcoholics seem to have difficulties with both these overlapping circuits in the brain – they are not only impulsive but also do not seem to process emotions in the same way their “health” peers do. Research has also begun  to show that emotional processing is indeed important to making decisions, as is the ability to inhibit impulsive responses.

It seems  young alcoholics in the making, are not using our emotions  to make decisions and  are also prone to being impulsive. This difficulty with making decisions must shape all other future decisions ?

Youth for families with a history of alcoholism (FH+) are more likely to engage in early adolescent alcohol use (1), they may be more prone to experience the neurotoxic effects of alcohol use during adolescence.


Heavy alcohol use during adolescence is related to poorer neuropsychological functioning, including response inhibition (2), working memory (3-5), and decision-making (6).

Neuroimaging studies have shown that alcohol abusing teens have atypical grey matter volume in the PFC (7,8), and subcortical structures, such as the hippocampus (9,10) OFC and the amgydala.

Further, they have reduced integrity of white matter pathways, in both long-range connections between frontal and parietal brain regions as well as in pathways connecting subcortical and higher-order brain areas (11,12).

FMRI studies have found reduced BOLD response in adolescent alcohol abusers
in brain regions important affective decision-making (13).

The raging debate in research has been to whether these deficits are a consequence of heavy alcohol use or if genetic and environmental factors, such as family history of alcoholism, may contribute.

Risk Factor for Alcohol Use Disorders (AUDs): Family History of Alcoholism

The observation that alcoholism runs in families has long been documented
(14-16). Over the past few decades, adoption (17,18) and twin (19)
studies have suggested that there is an increased likelihood of individuals with a family history of alcoholism to develop the disorder themselves (20, 21).

These studies indicate that familial alcoholism is one of the most robust predictors of the development of an AUD during one’s lifetime. Furthermore, this risk factor appears to be stable over time, since it also predicts the chronicity of alcohol dependence at multiple time points (22).
This indicates that higher familial density is often associated with greater
risk (23), with genetic vulnerability accounting for about 30-50% of
individual risk (24-26).


One of the best characterized findings in individuals with familial alcoholism are greater impulsivity and difficulties in response inhibition which are commonly seen in this population (27,28), and FH+ individuals are less able to delay reward gratification compared with their peers (29).

Emotional processing and its relationship with executive control has received much less
attention in FH+ individuals.

Alcohol Use Disorders and Emotional Processing

Emotion Recognition and Affective Processing – Research suggests that alcohol use disorder (AUDs)  are associated with deficits in emotion recognition
(30-33), which may be related to atypical brain structure and functioning observed in the
limbic system among alcoholics (34-37).

Alcoholics not only tend to overestimate the intensity of emotions seen in faces  but they also make more negative emotional attributions and often confuse one emotion for another, such as mislabeling disgust as anger or contempt (32). Additionally, these deficits seem to be specific to alcoholism, since alcoholics, both recently abstinent and long-term abstinent, perform poorer on emotion recognition tasks than individuals with other drug abuse history (38). Alcoholics have also been shown to have slower reaction time when recognizing emotions (39).
Furthermore, poorer accuracy on emotion recognition tasks in alcoholics does not improve across the duration of the task, even though better performance is seen over time with other drug abusers (38).

Polysubstance abusing adults, the majority of whom were alcohol abusers, showed emotion recognition deficits on angry, disgusted, fearful, and sad faces (40). Based on the evidence of emotion recognition deficits in alcoholics, it is necessary to determine whether similar difficulties are present in FH+ youth that could be disruptive to emotional functioning and may contribute to the ultimately higher prevalence of alcohol abuse in this population.

Ultimately we may be observing here external emotional processing difficulties in the same manner we observed “internal” emotional processing difficulties in those with alexithymia, the reduced ability to “read” internal emotions of which a majority of alcoholics appear to suffer.

In summary, alcoholics and children of alcoholic families appear to have both external, i.e. recognition of other people’s emotions as well as their own and these may relate to immature development of brain regions which govern emotional, processing, recognition and regulation, which appears to contribute greatly to the initiation and progression of alcohol abuse.


In addition to emotional processing deficits, alcoholics have various structural
and functional abnormalities in affective processing brain regions. Studies of the limbic system have found reduced volume in subcortical structures, including the amygdala, thalamus, ventral striatum, and hippocampus among adult alcoholics (41,42). Alcoholics with smaller amygdalar volumes, are more likely to continue drinking after six months of abstinence (37).

Marinkovic et al. (2009) alcoholics exhibited both amygdalar and hippocampal hypoactivity during face encoding, and when recognizing deeply encoded faces, alcoholics had significantly reduced amygdalar activity to positive and negative emotional expressions compared with controls (35). These results help explain findings in behavioral studies of alcoholics that have found considerable evidence for emotion recognition deficits in this population.

Furthermore, during emotion identification, alcoholics showed comparable
performance to controls, but had reduced brain response in the affective division of the
anterior cingulate cortex (ACC) to disgust and sadness, with this lack of affective response to aversive stimuli believed to underlie disinhibitory traits in AUDs (36).

There is also evidence to suggest that non-alcohol abusing FHP individuals
share similar deficits in affective systems to alcohol abusers, including reduced
amygdalar volume, less amygdalar activity in response to emotional stimuli, and high
rates of internalizing symptoms such as anxiety and depression (37; 45-47).

Furthermore, research examining the relationship between emotional
processing and cognition has found that poor inhibition in individuals with co-morbid
substance and alcohol abuse is associated with atypical arousal in response to affective images (48), and affective measures in FH+ alcoholics also relate to deficits in executive functioning, e.g impulsivity (47).

This suggests that familial history of AUDs may put individuals at greater risk for problems with emotional processing and associated disruptions in executive functioning (47), which could, in turn, increase risk for alcohol abuse (49).

As we suggested previously, in relation to decision making profiles, in those at risk, those with alexithymia and also with cocaine addicts, decision making often involves more emotion expressive-motor areas of the brain like the caudate nucleus which is more of a “feel it-do it” type of reaction to decision making or a emotionally impaired or distress-based impulsivity. If there is a difficulty  processing emotions, these emotions can not be used as a signal to guide adaptive, optimal decisions. Decisions appear more compulsive and short term.

It may be this tendency to act now, rather than later,  that defines the vulnerability in FH+ children. It is like driving through life with faulty brakes on decision making, which sets up a chain of maladaptive choices such as alcohol abuse which then damages these affective based decision making regions of the brain even more, with increasing  deleterious consequences as the addiction cycle progresses until the endpoint of addiction of very limited choice of behaviour as emotional distress acts eventually as a stimulus response to alcohol use.  Emotional processing usurped by compulsive responding.



Main reference – Cservenka, A., Fair, D. A., & Nagel, B. J. (2014). Emotional Processing and Brain Activity in Youth at High Risk for Alcoholism. Alcoholism: Clinical and Experimental Research.

1.  Dawson, D.A., 2000. The link between family history and early onset alcoholism: earlier initiation of drinking or more rapid development of dependence? J Stud Alcohol 61, 637-646.

2. Ferrett, H.L., Cuzen, N.L., Thomas, K.G., Carey, P.D., Stein, D.J., Finn, P.R., Tapert, S.F., Fein, G., 2011. Characterization of South African adolescents with alcohol use disorders but without psychiatric or polysubstance comorbidity. Alcohol Clin Exp Res 35, 1705-1715.

3. Brown, S.A., Tapert, S.F., 2004. Adolescence and the trajectory of alcohol use: basic to clinical studies. Ann N Y Acad Sci 1021, 234-244.

4.   Brown, S.A., Tapert, S.F., Granholm, E., Delis, D.C., 2000. Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcohol Clin Exp Res 24, 164-171.

5.   Squeglia, L.M., Schweinsburg, A.D., Pulido, C., Tapert, S.F., 2011. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 35, 1831-1841.

6. Johnson, C.A., Xiao, L., Palmer, P., Sun, P., Wang, Q., Wei, Y., Jia, Y., Grenard, J.L.,  Stacy, A.W., Bechara, A., 2008. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers. Neuropsychologia 46, 714-726.

7. De Bellis, M.D., Narasimhan, A., Thatcher, D.L., Keshavan, M.S., Soloff, P., Clark, D.B.,  2005. Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcohol Clin Exp Res 29, 1590-1600.

8.  Medina, K.L., McQueeny, T., Nagel, B.J., Hanson, K.L., Schweinsburg, A.D., Tapert, S.F., 2008. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol Clin Exp Res 32, 386-394.

9.  De Bellis, M.D., Clark, D.B., Beers, S.R., Soloff, P.H., Boring, A.M., Hall, J., Kersh, A., Keshavan, M.S., 2000. Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry 157, 737-744.

10.  Nagel, B.J., Schweinsburg, A.D., Phan, V., Tapert, S.F., 2005. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry Res 139, 181-190.

11.  Bava, S., Jacobus, J., Thayer, R.E., Tapert, S.F., 2013. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 37 Suppl 1, E181-189.

12.   McQueeny, T., Schweinsburg, B.C., Schweinsburg, A.D., Jacobus, J., Bava, S., Frank, L.R., Tapert, S.F., 2009. Altered white matter integrity in adolescent binge drinkers. Alcohol Clin Exp Res 33, 1278-1285.

13. Xiao, L., Bechara, A., Gong, Q., Huang, X., Li, X., Xue, G., Wong, S., Lu, Z.L., Palmer, P., Wei, Y., Jia, Y., Johnson, C.A., 2012. Abnormal Affective Decision Making Revealed in Adolescent Binge Drinkers Using a Functional Magnetic Resonance Imaging Study. Psychol Addict Behav.

14. Cotton, N.S., 1979. The familial incidence of alcoholism: a review. J Stud Alcohol 40, 89-116.

15. Goodwin, D.W., 1979. Alcoholism and heredity. A review and hypothesis. Arch Gen Psychiatry 36, 57-61.

16.  Schuckit, M.A., 1985. Genetics and the risk for alcoholism. Jama 254, 2614-2617

17. Bohman, M., 1978. Some genetic aspects of alcoholism and criminality. A population of adoptees. Arch Gen Psychiatry 35, 269-276.

18. Cloninger, C.R., Bohman, M., Sigvardsson, S., 1981. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry 38, 861-868.

19. Merikangas, K.R., Stolar, M., Stevens, D.E., Goulet, J., Preisig, M.A., Fenton, B., Zhang, H., O’Malley, S.S., Rounsaville, B.J., 1998. Familial transmission of substance use disorders. Arch Gen Psychiatry 55, 973-979

20. Finn, P.R., Kleinman, I., Pihl, R.O., 1990. The lifetime prevalence of psychopathology in men with multigenerational family histories of alcoholism. J Nerv Ment Dis 178, 500-504.

21. Goodwin, D.W., 1985. Alcoholism and genetics. The sins of the fathers. Arch Gen Psychiatry 42, 171-174.

22. Hasin, D., Paykin, A., Endicott, J., 2001. Course of DSM-IV alcohol dependence in a community sample: effects of parental history and binge drinking. Alcohol Clin Exp Res 25, 411-414.

23. Hill, S.Y., Yuan, H., 1999. Familial density of alcoholism and onset of adolescent drinking. J Stud Alcohol 60, 7-17.

24.   Heath, A.C., Bucholz, K.K., Madden, P.A., Dinwiddie, S.H., Slutske, W.S., Bierut, L.J., Statham, D.J., Dunne, M.P., Whitfield, J.B., Martin, N.G., 1997. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 27, 1381-1396.

25. Kaprio, J., Koskenvuo, M., Langinvainio, H., Romanov, K., Sarna, S., Rose, R.J., 1987. Genetic influences on use and abuse of alcohol: a study of 5638 adult Finnish twin brothers. Alcohol Clin Exp Res 11, 349-356.

26.  Knopik, V.S., Heath, A.C., Madden, P.A., Bucholz, K.K., Slutske, W.S., Nelson, E.C., Statham, D., Whitfield, J.B., Martin, N.G., 2004. Genetic effects on alcohol dependence risk: re-evaluating the importance of psychiatric and other heritable risk factors. Psychol Med 34, 1519-1530.

27. Acheson, A., Richard, D.M., Mathias, C.W., Dougherty, D.M., 2011a. Adults with a family history of alcohol related problems are more impulsive on measures of response initiation and response inhibition. Drug Alcohol Depend 117, 198-203.

28.  Saunders, B., Farag, N., Vincent, A.S., Collins, F.L., Jr., Sorocco, K.H., Lovallo, W.R., 2008. Impulsive errors on a Go-NoGo reaction time task: disinhibitory traits in relation to a family history of alcoholism. Alcohol Clin Exp Res 32, 888-894.

29.  Acheson, A., Vincent, A.S., Sorocco, K.H., Lovallo, W.R., 2011b. Greater discounting of delayed rewards in young adults with family histories of alcohol and drug use disorders: studies from the Oklahoma family health patterns project. Alcohol Clin Exp Res 35, 1607-1613.

30. Foisy, M.L., Kornreich, C., Petiau, C., Parez, A., Hanak, C., Verbanck, P., Pelc, I., Philippot, P., 2007b. Impaired emotional facial expression recognition in alcoholics: are these deficits specific to emotional cues? Psychiatry Res 150, 33-41.

31.  Foisy, M.L., Philippot, P., Verbanck, P., Pelc, I., van der Straten, G., Kornreich, C., 2005. Emotional facial expression decoding impairment in persons dependent on multiple substances: impact of a history of alcohol dependence. J Stud Alcohol 66, 673-681.

32.  Philippot, P., Kornreich, C., Blairy, S., Baert, I., Den Dulk, A., Le Bon, O., Streel, E., Hess, U., Pelc, I., Verbanck, P., 1999. Alcoholics’ deficits in the decoding of emotional facial expression. Alcohol Clin Exp Res 23, 1031-1038.

33.  Townshend, J.M., Duka, T., 2003. Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41, 773-782.

34.  Gilman, J.M., Hommer, D.W., 2008. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict Biol 13, 423-434.

35. Marinkovic, K., Oscar-Berman, M., Urban, T., O’Reilly, C.E., Howard, J.A., Sawyer, K., Harris, G.J., 2009. Alcoholism and dampened temporal limbic activation to emotional faces. Alcohol Clin Exp Res 33, 1880-1892.

36.  Salloum, J.B., Ramchandani, V.A., Bodurka, J., Rawlings, R., Momenan, R., George, D., Hommer, D.W., 2007. Blunted rostral anterior cingulate response during a simplified decoding task of negative emotional facial expressions in alcoholic patients. Alcohol Clin Exp Res 31, 1490-1504.

37.  Wrase, J., Makris, N., Braus, D.F., Mann, K., Smolka, M.N., Kennedy, D.N., Caviness, V.S., Hodge, S.M., Tang, L., Albaugh, M., Ziegler, D.A., Davis, O.C., Kissling, C., Schumann, G., Breiter, H.C., Heinz, A., 2008. Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165, 1179-1184.

38.  Kornreich, C., Foisy, M.L., Philippot, P., Dan, B., Tecco, J., Noel, X., Hess, U., Pelc, I., Verbanck, P., 2003. Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Res 119, 251-260.

39.  Maurage, P., Campanella, S., Philippot, P., Martin, S., de Timary, P., 2008. Face processing in chronic alcoholism: a specific deficit for emotional features. Alcohol Clin Exp Res 32, 600-606.

40.  Fernandez-Serrano, M.J., Perez-Garcia, M., Schmidt Rio-Valle, J., Verdejo-Garcia, A., 2010. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol 24, 1317-1332.

41.  Durazzo, T.C., Tosun, D., Buckley, S., Gazdzinski, S., Mon, A., Fryer, S.L., Meyerhoff, D.J., 2011. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence. Alcohol Clin Exp Res 35, 1187-1200.

42.   Makris, N., Oscar-Berman, M., Jaffin, S.K., Hodge, S.M., Kennedy, D.N., Caviness, V.S., Marinkovic, K., Breiter, H.C., Gasic, G.P., Harris, G.J., 2008. Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64, 192-202.

43.   Benegal, V., Antony, G., Venkatasubramanian, G., Jayakumar, P.N., 2007. Gray matter volume abnormalities and externalizing symptoms in subjects at high risk for alcohol dependence. Addict Biol 12, 122-132.

44.  Glahn, D.C., Lovallo, W.R., Fox, P.T., 2007. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry 61, 1306-1309.

45.   Hill, S.Y., De Bellis, M.D., Keshavan, M.S., Lowers, L., Shen, S., Hall, J., Pitts, T., 2001. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry 49, 894-905.

46.  Oscar-Berman, M., Bowirrat, A., 2005. Genetic influences in emotional dysfunction and alcoholism-related brain damage. Neuropsychiatr Dis Treat 1, 211-229.

47.  Sinha, R., Parsons, O.A., Glenn, S.W., 1989. Drinking variables, affective measures and neuropsychological performance: familial alcoholism and gender correlates. Alcohol 6, 77-85

48.  Verdejo-Garcia, A., Bechara, A., Recknor, E.C., Perez-Garcia, M., 2006. Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12, 405-415.

49.  Fox, H.C., Hong, K.A., Sinha, R., 2008. Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addict Behav 33, 388-394


The earlier you start drinking the greater the chance of being alcoholic

Early Onset to Begin Drinking

It is a very common theme in AA meetings and other 12 step groups about how young alcoholics started drinking. I always wondered if this had an effect on later alcoholism, although I know many alcoholics who started drinking much later in life. Looking at the research below it seems that the age a person started drinking can predict later problems with alcohol. Interestingly “disinhibited” behaviour, such as impulsiveness and not being able to “stop oneself” from engaging in certain behaviours also have a bearing on later alcohol problems, as does adverse childhood experiences   and the amount of alcoholism in the family.

The age of onset to begin regular drinking is an important predictor of age of first alcohol problem and subsequent alcohol dependence (1,2),  as well as greater severity and persistence of problems with illicit drugs (3).


For individuals that initiated drinking prior to age 14 years, the likelihood of adult alcohol dependence was 40%, four times more likely than individuals who began drinking at 20 years or older (2) .  It was also reported that individuals that drank before age 14 years were more than twice as likely to become alcohol dependent than those trying alcohol after age 16 years (4).

A number of factors such as early adverse childhood experiences (5,6)  and familial density of alcoholism (7,8), predict earlier age of drinking onset.

Earlier onset of drinking also appears to be related to the presence of behaviors often characterized as “disinhibited”.There is also abundant evidence that behavioral under-control is an important determinant of later development of substance use disorders (SUD) (9,10). Behavioral under-control observed as early as 3 years is predictive of alcohol-related problems at 21 years (11), and in adolescents mediates the relationship between family history of alcoholism and young adult SUDs (12)



1. Hawkins JD, Graham JW, Maguin E, Abbott R, Hill KG, Catalano RF. Exploring the effects of age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse.Journal of Studies Alcohol. 1997;58(3):280–290.[PMC free article]

2. Grant BF, Dawson DA. Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey.Journal of Substance Abuse. 1997;9:103–110.

3. Kandel DB, Yamaguchi K, Chen K. Stages of progression in drug involvement from adolescence to adulthood: further evidence for the gateway theory. Journal of Studies Alcohol.1992;53(5):447–457.

4. Sartor CE, Lynskey MT, Heath AC, Jacob T, True W. The role of childhood risk factors in initiation of alcohol use and progression to alcohol dependence. Addiction.2007;102(2):216–225.

5. Rothman EF, Edwards EM, Heeren T, Hingson RW. Adverse childhood experiences predict earlier age of drinking onset: results from a representative US sample of current or former drinkers. Pediatrics. 2008;122(2):e298–e304.

6. Waldrop AE, Ana EJ, Saladin ME, McRae AL, Brady KT. Differences in early onset alcohol use and heavy drinking among persons with childhood and adulthood trauma. American Journal on Addictions. 2007;16(6):439–442.

7. Hill SY, Yuan H. Familial density of alcoholism and onset of adolescent drinking. Journal of Studies on Alcohol.1999;60(1):7–17.

8.  Hill SY, Shen S, Lowers L, Locke J. Factors predicting the onset of adolescent drinking in families at high risk for developing alcoholism. Biological Psychiatry. 2000a;48(4):265–275.

9. Stice E, Barrera M, Jr., Chassin L. Prospective differential prediction of adolescent alcohol use and problem use:examining the mechanisms of effect. Journal of Abnormal Psychology.1998;107(4):616–628

10. Zucker RA. Anticipating problem alcohol use developmentally from childhood into middle adulthood: what have we learned?Addiction. 2008;103(Suppl 1):100–108. [PMC free article]

11.  Caspi A, Moffitt TE, Newman DL, Silva PA. Behavioral observations at age 3 years predict adult psychiatric disorders. Longitudinal evidence from a birth cohort. Archives of General Psychiatry. 1996;53(11):1033–1039.

12. King KM, Chassin L. Mediating and moderated effects of adolescent behavioral undercontrol and parenting in the prediction of drug use disorders in emerging adulthood.Psychology of Addictive Behaviors. 2004;18(3):239–249.

Emotional Dysregulation, recovery and relapse

Throughout our blogs thus far, we have attempted to highlight how emotional dysregulation appears to prevalent to all aspects of alcoholism and addiction from pre-morbid vulnerability to endpoint compulsive addictive behaviours.

Here we highlight a few articles which have considered how prevalent is emotional dysregulation in alcoholism and addiction in early abstinence/recovery. 

Early abstinence from chronic alcohol dependence is associated with increased emotional sensitivity to stress-related craving as well as changes in brain systems associated with stress and emotional processing.

Early abstinence from alcohol is associated with changes in neural stress and reward systems that can include atrophy in subcortical and frontomesal regions (1).

Moreover, recent imaging studies have shown that these brain regions are also associated with the experience and regulation of emotion (2).

While alcohol-related changes in emotion, stress and reward-related brain regions have been well documented difficulties in emotion regulation (ER) have not been studied much.


One study (3) examined ER in early abstinent alcohol-dependent individuals compared with social drinkers using the Difficulties in Emotion Regulation Scale (DERS).

The DERS is an inclusive scale and defines ER in terms of four major factors: the understanding of emotion, the acceptance of emotion, the ability to control impulsive behavior and the ability to access ER strategies benefiting the individual and the specific goals of the situation. The scale has been validated in cocaine dependent patients (4) and on alcohol dependent individuals.

ER difficulties in treatment-engaged alcohol dependent (AD) patients during a period of early abstinence that is marked by an overall distress state. AD patients reported an overall problem with emotion regulation compared with SDs in the first few days of abstinence; in particular with emotional awareness and impulse control. Following protracted abstinence, AD patients significantly improved awareness and clarity of their emotional experience, and only significant problems with impulse control persisted.

This is consistent with neuro-imaging studies showing chronic alcohol abuse to be associated with stress and cue-related neuroadaptations in the medial prefrontal and anterior cingulate regions of the brain (6), which are strongly implicated in the self-regulation of emotion and behavioral self-control (7). As impulsivity in distress states may reflect a change in priority from self-control to affect regulation (8 ).

As we have seen in other blogs and articles (5) these areas are those which improve in short term abstinence/recovery.

Cocaine-dependent individuals also report emotion regulation difficulties, particularly during early abstinence (4). Additionally, protracted distress-related impulse control problems suggest potential relapse vulnerability Difficulties concerning emotional clarity and awareness compared with controls were observed which suggests that cocaine dependent individuals were less able to acknowledge and/or have a clear understanding of their emotions.

Clarity and awareness of emotions could represent early processing components of emotional competence (9) and may be integral to the maintenance of drug use.

The cocaine addicts appeared to have greater difficulty in developing effective emotional coping strategies  (i.e. they would be more likely to believe that little could be  done to change an emotionally stressful situations.) They were also found to report significantly higher scores on the Impulse subscale of the DERS compared with controls, indicating difficulties with regard to inhibiting inappropriate or impulse behaviors under stressful situations which can prompt relapse.


1. Bartsch, A. J., Homola, G., Biller, A., Smith, S. M., Weijers, H. G., Wiesbeck, G. A., et al. (2007). Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 130(Pt 1), 36−47

2. Fox, H. C., Hong, K. A., & Sinha, R. (2008). Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addictive Behaviors33(2), 388-394.

3. Ochsner, K.N., Gross, J.J., 2005. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249

4. Fox, H. C., Hong, K. A., & Sinha, R. (2008). Difficulties in emotion regulation and impulse control in recently abstinent alcoholics compared with social drinkers. Addictive Behaviors33(2), 388-394.

5. Sinha, R., & Li, C. S. (2007). Imaging stress- and cue-induced drug and alcohol craving: Association with relapse and clinical implications. Drug and Alcohol Review, 26(1), 25−31.

6. Connolly, C. G., Foxe, J. J., Nierenberg, J., Shpaner, M., & Garavan, H. (2012). The neurobiology of cognitive control in successful cocaine abstinence. Drug and alcohol dependence121(1), 45-53.

7. Baumeister, R.F., Heatherton, T.F., Tice, D.M., 1994. Loosing Control: How and Why People Fail at Self-regulation. Academic Press, San Diego, CA

8.  Tice, D.M., Bratslavsky, E., Baumeister, R.F., 2001. Emotional distress regulation takes precedence over impulse control: if you feel bad, do it! J. Pers Soc. Psychol. 80, 53–67.

9. Salovey, P., Stroud, L.R., Woolery, A., Epel, E.S., 2002. Perceived emotional intelligence, stress reactivity, and symptom reports: further explorations using the trait Meta-mood scale. Psychol. Health 17, 611–627